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Образование и энергия связи гиперядер: 
статистический подход 

В ядерных реакциях при высоких энергиях можно 
одновременно получить много гиперядер в резуль-
тате захвата гиперонов ядерными остатками. Рас-
сматривается статистическая дезинтеграция таких 
гиперядерных систем и связь образования фраг-
ментов с энергиями связи гиперонов. Показано, что 
энергию связи гиперонов можно эффективно оце-
нить по выходам различных изотопов гиперядер. 
Для этой цели предлагается метод двойного отно-
шения. Преимуществом этой процедуры является 
ее универсальность и возможность задействовать 
много различных изотопов. Этот метод также мо-
жет быть применен для ядер с большими значения-
ми странности, энергии связи которых было очень 
трудно измерить в предшествующих гиперядерных 
экспериментах. 

including multi-strange ones. There were also experimental confirmations of such processes

leading at least to single hypernuclei [12, 22, 23].

The possibility to obtain many various hypernuclei in the same reaction opens new op-

portunities for their investigation in comparison with previous methods. Complex multi-

hypernuclear systems incorporating more than two hyperons can be created in the energetic

nucleus-nucleus collisions [16, 19]. This may be the only conceivable method to go beyond

double hypernuclei, and obtain new experimental information on properties of multi-hyperon

systems. In this paper we demonstrate how the important knowledge on the hyperon bind-

ing energies, including in multi-strange nuclei, can be extracted from analysis of the relative

yields of hypernuclei.

II. STATISTICAL PRODUCTION OF HYPERNUCLEI FROM EXCITED HY-

PERNUCLEAR SYSTEMS

The hyperons are abundantly produced in high energy particle reactions, e.g., nucleus-

nucleus, hadron-nucleus and lepton-nucleus collisions. The production of strangeness corre-

lates with particle production and, usually, emission of many nucleons can accompany the

production of hyperons. An initial nucleus can loose many nucleons, and, as known from

normal nucleus interactions, these processes can lead to a high excitations of remaining

residual nuclei, see e.g. [24–26]. Therefore, the capture of a produced hyperon will be also

realized mostly at the excited nuclei. As a result such deep-inelastic processes can form large

hyper-residues with very broad distribution in mass and excitation energy. As was demon-

strated in our previous works [17–19], the yields of the hypernuclear residues in peripheral

ion collisions will saturate with energies above 3–5 A GeV (in the laboratory frame).

The reactions of formation of excited nuclear residues in high-energy nucleus-nucleus

and hadron-nucleus collisions were intensively studied in connection with fragmentation and

multifragmentation processes. In particular, masses and excitation energies of the residues

are known from experimental and theoretical works, e.g., Refs. [19, 25]. At high excitation

energy the dominating decay mode is a multifragmentation process [24, 27, 28]. The hyperon

interactions in a nucleus are similar to nuclear ones, and its potential is around 2/3 of the

nucleon one. Therefore, we believe, that an addition of few hyperons to a multi-nucleon

system can not change its disintegration behavior. According to the present understanding,
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I. INTRODUCTION

A promising way to produce hypernuclei is to use the copious production of hyperons

(Λ,Σ,Ξ,Ω) in relativistic nuclear reactions with their subsequent capture by nuclei. Hy-

pernuclei live significantly longer than the typical reaction times. Baryons with strangeness

embedded in the nuclear environment allow for approaching the many-body aspect of the

strong three-flavor interaction (i.e., including u, d, and s quarks) at low energies. Also hyper-

nuclei can serve as a tool to study the hyperon–nucleon and hyperon–hyperon interactions.

The investigation of reactions leading to hypernuclei and the structure of hypernuclei is the

progressing field of nuclear physics, since it provides complementary methods to improve

traditional nuclear studies and open new horizons for studying particle physics and nuclear

astrophysics (see, e.g., [1–6] and references therein).

A traditional way for the hypernuclear physics is focusing on spectroscopic information

and is dominated by a quite limited set of lepton and hadron induced reactions [1, 2]. In

these reactions the hyperons produced in the first interaction are directly captured by nuclei

in their ground and low excited states. Kaons are often used for tagging this production.

Within this method it is possible to obtain rather precisely the binding energies of hyperons

inside nuclei by measuring few products of the reaction exactly. However, there are severe

limitations on such methods, since the targets should be mainly stable (not radioactive).

Therefore. many hypernuclear isotopes are not reachable experimentally in this case.

We emphasize a possibility to form hypernuclei in the deep-inelastic reactions leading to

fragmentation processes, as they were discovered long ago [7]. One can form hypernuclei

of all sizes and isospin content when these hyperons are captured by nucleons and nuclear

fragments produced in same reaction events. Many experimental collaborations STAR at

RHIC [8], ALICE at LHC [9], PANDA [10], CBM [11], HypHI, Super-FRS, R3B at FAIR

[12, 13], BM@N, MPD at NICA [14]) plan to investigate hypernuclei and their properties

in reactions induced by relativistic hadrons and ions. The limits in isospin space, particle

unstable states, multiple strange nuclei and precision lifetime measurements are unique

topics of these fragmentation reactions. A capture of hyperons by large nuclear residues

is specially interesting since it provides a natural way to study large bulbs of hypermatter

and its evolution, for example, the liquid-gas type phase transition. It was theoretically

demonstrated [5, 15–21] that in such a way it is possible to produce all kind of hypernuclei
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multifragmentation is a relatively fast process, with a characteristic time around 100 fm/c,

where, nevertheless, a high degree of equilibration (chemical equilibrium) is reached. This

is a consequence of the strong interaction between baryons, which are in the vicinity of each

other in the freeze-out volume.

The statistical models have demonstrated very good agreement in comparison with frag-

mentation and multifragmentation data [24, 25, 27, 29]. It is naturally to extend the sta-

tistical approach for hypernuclear systems. It is also important that the same numerical

methods used previously for execution of the models can be extended. The statistical multi-

fragmentation model (SMM), which was very successfully applied for description of normal

multifragmentation processes, was generalized for hypernuclei in Ref. [15]. A transition from

the compound hyper-nucleus to the multifragmentation regime was also under investigation

[5, 15]. The break-up channels are generated according to their statistical weight. The Grand

Canonical approximations leads to the following average yields of individual fragments with

the mass (baryon) number A, charge Z, and the Λ-hyperon number H :

YA,Z,H = gA,Z,H · Vf
A3/2

λ3
T

exp

[

−
1

T
(FA,Z,H − µAZH)

]

,

µAZH = Aµ+ Zν +Hξ. (1)

Here T is the temperature, FA,Z,H is the internal free energies of these fragments, Vf is the free

volume available for the translation motion of the fragments, gA,Z,H is the spin degeneracy

factor of species (A,Z,H), λT = (2π�2/mNT )
1/2

is the baryon thermal wavelength, mN

is the average baryon mass. The chemical potentials µ, ν, and ξ are responsible for the

mass (baryon) number, charge, and strangeness conservation in the system, and they can be

numerically found from the corresponding conservation laws. In this model the statistical

ensemble includes all break-up channels composed of baryons and excited fragments. The

primary fragments are formed in the freeze-out volume V . We use the excluded volume

approximation V = V0+Vf , where V0 = A0/ρ0 (A0 is the total baryon number and ρ0 ≈0.15

fm−3 is the normal nuclear density), and parametrize the free volume Vf = κV0, with κ ≈ 2,

as taken in description of experiments in Refs. [25, 27, 29].

The following model development depends on the physical processes which are the most

adequate to the analyzed reactions. For example, nuclear clusters in the freeze-out volume

can be described in the liquid-drop approximation: Light fragments with mass number

A < 4 are treated as elementary particles with corresponding spins and translational degrees

4
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of freedom (”nuclear gas”). Their binding energies were taken from experimental data

[1, 2, 24]. The fragments with A = 4 are also treated as gas particles with table masses,

however, some excitation energy is allowed Ex = AT 2/ε0 (ε0 ≈16 MeV is the inverse volume

level density parameter [24]), that reflects a presence of excited states in 4He, 4
ΛH, and

4
ΛHe

nuclei. Fragments with A > 4 are treated as heated liquid drops. In this way one can study

the nuclear liquid-gas coexistence of hypermatter in the freeze-out volume. The internal free

energies of these fragments are parametrized as the sum of the bulk (FB
A ), the surface (F S

A),

the symmetry (F sym
AZH), the Coulomb (FC

AZ), and the hyper energy (F hyp
AH ):

FA,Z,H = FB
A + F S

A + F sym
AZH + FC

AZ + F hyp
AH . (2)

Here, the first three terms are written in the standard liquid-drop form [24]:

FB
A =

(

−w0 −
T 2

ε0

)

A , (3)

F S
A = β0

(

T 2
c − T 2

T 2
c + T 2

)5/4

A2/3 , (4)

F sym
AZH = γ

(A−H − 2Z)2

A−H
, (5)

where w0 = 16 MeV, β0 = 18 MeV, Tc = 18 MeV and γ = 25 MeV are the model param-

eters which are extracted from nuclear phenomenology and provide a good description of

multifragmentation data [24, 25, 27, 29]. The Coulomb interaction of fragments is described

within the Wigner-Seitz approximation, and FC
AZ is taken as in the ref. [15, 24]:

FC
AZ(V ) =

3

5

[

1−

(

V0

V

)1/3
]

(eZ)2

r0A1/3
. (6)

where r0 = 1.2 fm and e denotes the electron charge.

For our purpose the free hyper-energy term F hyp
AH is very important. We assume that it is

determined only by the binding energy of hyper-fragments. Presently, only few ten masses of

single hypernuclei (mostly light ones) are experimentally established [1, 2], and, practically,

there are no reliable measurements of double hypernuclei. There are only few theoretical

estimations of their masses based on a limited description of the available data. In Ref. [15]

we have suggested a liquid drop hyper term:

F hyp
AH = (H/A) · (−10.68A+ 21.27A2/3)MeV. (7)

5
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In this formula the binding energy is proportional to the share of hyperons in matter (H/A).

The second part is the volume contribution minus the surface one: It is a normal liquid-

drop parametrization assuming saturation of the nuclear interaction. The linear dependence

at small H/A is in agreement with theoretical predictions [30] for hyper matter. As was

demonstrated in Refs. [5, 15] this parametrization of the hyperon binding energy describes

available experimental data quite well. It is important that two boundary physical effects

are correctly reproduced: The binding energies of light hypernuclei (if a hyperon substitutes

a neutron) can be lower than in normal nuclei, since the hyperon-nucleon potential is smaller
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(

T 2
c − T 2

T 2
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A2/3 , (4)
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, (5)
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3

5

[

1−

(
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V
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. (6)
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on A. Since in the liquid-drop approximation we assume that the fragments with A > 4 are

excited and do populate many states (above the ground) according to the given temperature

dependence of the free energy, then we take gA,Z,H = 1. Within SMM we can connect the

relative yields of hypernuclei with the hyperon binding energies. It is interesting that in this

formulation one can use other parametrizations to describe nuclei in the freeze-out. This

statistical approach is quite universal, and only small corrections, like the table-known spins

and energies, may be required for more extensive consideration.

We suggest the following receipt for obtaining information on the binding energies of

hyperons inside nuclei. Let us take two hyper-nuclei with different masses, (A1, Z1, H) and

(A2, Z2, H), together with nuclei which differ from them only by one Λ hyperon. We consider

the double ratio (DR) of YA1,Z1,H/YA1−1,Z1,H−1 to YA2,Z2,H/YA2−1,Z2,H−1. We obtain from the

above formulae

DRA1A2
=

YA1,Z1,H/YA1−1,Z1,H−1

YA2,Z2,H/YA2−1,Z2,H−1

= αA1A2
exp

[

−
1

T

(

∆Ebh
A1A2

)

]

, (10)

where

∆Ebh
A1A2

= Ebh
A1

− Ebh
A2
, (11)

and the ratio of the C-coefficients we denote as

αA1A2
= CA1,Z1,H/CA2,Z2,H . (12)

B. Fragments with fixed binding energies

We note that the same DR expression may be deduced in a standard statistical way (see,

e.g., [31]), without sophisticated description of the hot fragments in the freeze-out volume.

We consider only fixed fragment binding energies without a temperature dependence. This

physical condition can be adequate for lightest fragments. In this case after disintegration

of nuclear systems the grand-canonical yields of a normal nucleus in the ground state can

be written as

YA,Z = gA,Z · Vf
A3/2

λ3
T

exp

[

−
1

T

(

Eb
A,Z − µA,Z

)

]

,

µA,Z = Aµ+ Zν, (13)

where A is the nucleon number, gA,Z is the standard spin factor, and Eb
A,Z is the nucleus

ground state binding energy. If the system contains one or few hyperons this formula can

7
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7

be easily generalized for producing hypernuclei with additionally captured Hc ≥ 1 hyperons

as (compare with eq.(1))

YA
′ ,Z,Hc

= gA′ ,Z,Hc
· Vf

A
′3/2

λ3
T

exp

[

−
1

T

(

Eb
A′ ,Z,Hc

− µA,Z,Hc

)

]

,

µA,Z,Hc
= A

′

µ+ Zν +Hcξ, (14)

where A
′

= A+Hc, and gA′ ,Z,Hc
is a new spin factor, which should only slightly differ from

gA,Z, since a hyperon is usually located in s-state. Eb
A,Z,Hc

differs from the normal binding

energy only via the pure hyperon binding energy Ebh
A

′
,Z,Hc

:

Eb
A

′
,Z,Hc

= Eb
A,Z + Ebh

A
′
,Z,Hc

, (15)

which leads to the equivalence with (8) for cold fragments. Therefore, the corresponding

double ratio DRA
′

1
A

′

2

of the yields of hypernuclei with mass numbers A
′

1 = (A1 + Hc) and

A
′

2 = (A2 +Hc) can be again written as eq,(10), however, with

∆Ebh

A
′

1
A

′

2

= Ebh
A

′

1
,Z1,Hc

− Ebh
A

′

2
,Z2,Hc

, (16)

and with the coefficient

αA
′

1
A

′

2

=
g
A

′

1
,Z1,Hc

/g
A

′

1
−1,Z1,Hc−1

g
A

′

2
,Z2,Hc

/g
A

′

2
−1,Z2,Hc−1

·
A

′3/2
1 /(A

′

1 − 1)3/2

A
′3/2
2 /(A

′

2 − 1)3/2
. (17)

In this case, as was mentioned, the hypernuclei are considered in the final states (cold ones)

in the freeze-out.

As one can simply deduce from eq.(10), the logarithm of the double ratio is directly

proportional to the difference of the hyperon binding energies in A1 and A2 hypernuclei,

∆Ebh
A1A2

, divided by temperature. Therefore, we can finally rewrite the relation between the

hypernuclei yields and the hyperon binding energies as

∆Ebh
A1A2

= T · [ln(αA1A2
)− ln(DRA1A2

)] . (18)

In some cases we expect a large difference in hyperon binding energy in both nuclei. For

example, according to the liquid-drop approach (see eq. (2)) it can be when the difference

between A1 and A2 is essential (i.e., the mass number A2 is much larger than A1). The influ-

ence of the pre-exponential α coefficients is small and can be directly evaluated, depending

on the selected hypernuclei. This opens a possibility for the explicit determination of the
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In this case, as was mentioned, the hypernuclei are considered in the final states (cold ones)

in the freeze-out.

As one can simply deduce from eq.(10), the logarithm of the double ratio is directly

proportional to the difference of the hyperon binding energies in A1 and A2 hypernuclei,

∆Ebh
A1A2

, divided by temperature. Therefore, we can finally rewrite the relation between the

hypernuclei yields and the hyperon binding energies as

∆Ebh
A1A2

= T · [ln(αA1A2
)− ln(DRA1A2

)] . (18)

In some cases we expect a large difference in hyperon binding energy in both nuclei. For

example, according to the liquid-drop approach (see eq. (2)) it can be when the difference

between A1 and A2 is essential (i.e., the mass number A2 is much larger than A1). The influ-

ence of the pre-exponential α coefficients is small and can be directly evaluated, depending

on the selected hypernuclei. This opens a possibility for the explicit determination of the
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binding energy difference from experiments. In this case, it is necessary to measure some

number of the hypernuclei in one reaction and select the corresponding pairs of hypernuclei.

One has to identify such hypernuclei, for example, by the correlations and vertex technique.

However, there is no need to measure very precisely the momenta of all particles produced in

the reaction (including after the week decay of hypernuclei) to obtain their binding energy,

as it must be done in processes of direct capture of hyperons in the ground and slightly

excited states of the target nuclei (e.g., in missing mass experiments [2, 32]). Therefore, our

procedure perfectly suits for investigation of hypernuclei in the high-energy deep-inelastic

hadron and ion induced reactions.

C. Isobar double ratios

Another interesting way for this study is to use the double ratios of yields with the same

mass numbers for light and heavy pairs. This case is easy to illustrate for cold fragments.

The so-called strangeness population factor S was introduced in Ref. [33] for interpretation

of light hypernuclei production in relativistic heavy-ion collision (at momenta of 11.5 A

GeV/c):

S =
Y3HΛ

/Y3He

YΛ/YP

(19)

Generally, if we involve the pairs of nuclei which differ by one proton instead of Λ-hyperon,

we can write the isobar double ratio:

DRI
A1A2

=
YA1,Z1,H/YA1,Z1+1,H−1

YA2,Z2,H/YA2,Z2+1,H−1

= αI
A1A2

exp

[

−
1

T

(

∆Eb
X

)

]

, (20)

where

αI
A1A2

=
gA1,Z1,H/gA1,Z1+1,H−1

gA2,Z2,H/gA2,Z2+1,H−1

, (21)

and the binding energy difference between 4 fragments

∆Eb
X = (Eb

A1,Z1,H − Eb
A2,Z2,H)− (Eb

A1,Z1+1,H−1 −Eb
A2,Z2+1,H−1). (22)

The last expression (22) can not be factorized into the binding energies of normal nuclei with

A1 and A2 and the part related only to the hyperon binding (as it was possible in formulae

(8) and (15)), since it includes also the difference of the hyperon binding in hyper-nuclei

with Z + 1. Therefore, it requires complicated calculations of the coupled equations for

extracting the hyperon binding. In addition, extra experimental isobar measurements will

9
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be necessary. Still, the convenient application of DRI can be found for single hypernuclei

with H = 1, when for the pair nuclei (at H − 1 = 0 and Z +1) there are only normal nuclei

with known binding energies. In this case one can rewrite the formula (18) as

∆Ebh
A1A2

= T ·
[

ln(αI
A1A2

)− ln(DRI
A1A2

)
]

+∆EGS
A1A2

, (23)

where ∆EGS
A1A2

is the difference of the ground state binding energies of non-strange nuclei:

∆EGS
A1A2

= (Eb
A1,Z1+1 −Eb

A2,Z2+1)− (Eb
A1−1,Z1

− Eb
A2−1,Z2

). (24)

In the above mentioned example, as was obtained by AGS-E864 collaboration [33], S =

0.36 (with large error bars +−0.26) for the most central collisions and for fragments produced

in the midrapidity region. Since the binding energies of all nuclei in S-factor (19) are

known from other experiments we can from formula (20) evaluate the temperature of the

excited hyper-source leading to producing of these fragments and hypernuclei: The found

chemical temperature is around T ≈ 5.5 MeV. This is typical for the nuclear liquid-gas phase

coexistence region under condition that all available baryons are produced in a dynamical

way. It is also consistent with the limited equilibration of fragments reported previously for

central heavy ion collisions [34].

D. Novel directions for application of the method

It is clear from the subsections A and B that the suggested double ratio approach can

be applied to hypernuclei with any number of hyperons: As obvious, the equations (1) and

(10) can be used for H > 1. One can reach a multi-strange residues in nuclear reactions

with a quite large probability [19], and a very wide mass/isospin range will be available for

examination. As a result, one can get direct experimental evidences for hyperon binding

energies in double/triple hypernuclei and on influence of the isospin on hyperon interactions

in multi-hyperon nuclear matter.

The connection between the relative hyperon binding energies ∆Ebh
A1A2

and its absolute

values can be done straightforward: It will be sufficient to make normalization to the binding

energy of a known hypernuclei (e.g., A2) obtained with other methods. However, even

relative values are extremely important, when we pursue a goal to investigate the trends of

the hyperon interaction in different nuclear surroundings, e.g., neutron-rich or neutron-poor

10
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ones. Novel conclusions can be obtained by comparing yields of neutron-rich and neutron-

poor hypernuclei. The isospin influence on the hyperon interaction in matter (revealing in 

the hyperon binding energies) will be possible to extract directly in experiment by using the 

formula (18). Especially multi-strange nuclear systems would be interesting, since they can 

give info on evolution of the hyperon-hyperon interaction depending on strangeness. These 

measurements are important for many astrophysical sites, for example, for understanding 

the neutron star structure [35, 36].

The comprehensive analysis of double hypernuclei and multi-hyperon nuclei is possible 

within this approach, and it seems the only realistic way to address experimentally the 

hyperon binding in multi-strange nuclei. This is an important advantage over the standard 

hypernuclear measurements. Actually, the disintegration of hot hyper-residues suits in the 

best for this examination since all kind of normal and hyper-fragments can be formed within 

the same statistical process. As was previously established in multifragmentation studies, the 

selection of adequate reaction conditions can be experimentally verified.

IV. INFLUENCE OF PROCESSES ACCOMPANYING THE STATISTICAL 

FRAGMENTATION

The conception of the statistical formation of fragments in the freeze-out volume suggests, 

first, the existence of some important parameters (e.g., temperature), and, second, it may 

suggest the phenomena (e.g., secondary interactions) which can finally change the baryon 

composition of fragments after they leave the freeze-out. All these effects were under careful 

examination previously in multifragmentation processes. We outline how it could be taken 

into account in the hypernuclear case.

A. Temperature and the freeze-out state

In order to find ∆Ebh
A1A2

in experiment within the double ratio approach, we should de-

termine the temperature T of the disintegrating hypernuclear system. This observable was

also under intensive investigation recent years in connection with multi-fragment formation.

There were suggested various methods: using kinetic energies of fragments, excited states

population, and isotope thermometers [28, 37, 38]. Usually, all evaluations give the temper-
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also under intensive investigation recent years in connection with multi-fragment formation.

There were suggested various methods: using kinetic energies of fragments, excited states

population, and isotope thermometers [28, 37, 38]. Usually, all evaluations give the temper-
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ature around 4–6 MeV in the very broad range of the excitation energies (at E∗ > 2 − 3

MeV per nucleon), providing so-called a plateau-like behavior of the caloric curve [24, 28].

The isotope thermometer method is the most promising, since it allows for involving a large

number of normal measured isotopes in the same reactions which produce hypernuclei. The

corresponding experimental and theoretical research were performed last years to investi-

gate better the temperature and isospin dependence of the nuclear liquid-gas type phase

transition [38–41]. We believe that the great experience accumulated previously in this field

gives a chance to find a reliable temperature of the hypernuclear residues.

In this case it would be instructive to select the reaction conditions leading to similar

freeze-out states. The freeze-out restoration methods were extensively tested previously: In

particular, the masses and excitation energies of the hypernuclear residues can be found

with a sufficient precision [42, 43]. One can analyze the subsequent ranges of the excitation

energy (from low to very high ones) to investigate the evolution of the hypernuclei with the

temperature and the phase transition in hyper-matter. It is specially interesting to move into

the neutron-rich domain of the nuclear chart, by selecting neutron-rich target or projectiles,

in addition to sorting out the various excitations of the sources.

B. Secondary de-excitation corrections

We may expect that the primary fragments and hyper-fragments (specially, large ones) in

the freeze-out volume could be excited, therefore, they should fastly decay after escaping the

freeze-out. For low excited sources the fragment excitation energy should roughly correspond

to the compound nucleus temperature. As was established in theory and multifragmenta-

tion experiments [44], the internal fragment excitations are around 2–3 MeV per nucleon

for highly excited residue sources. The secondary de-excitation influences all 4 fragments

entering the double ratio and the fragments should loose few nucleons. The investigation of

similar nuclear decay processes of excited nuclei in normal multifragmentation reactions tell

us that if the difference in mass between initial fragments is small then the mass difference

between final products will be small too. Following this de-excitation the mass numbers

will change and we expect a smooth transformation of ∆Ebh
A1A2

versus the variation of mass

difference ∆A = (A2 − A1): The new yields and mass numbers should be used for the final

estimate. This effect can be investigated in the framework of the evaporation model for large

12
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entering the double ratio and the fragments should loose few nucleons. The investigation of

similar nuclear decay processes of excited nuclei in normal multifragmentation reactions tell

us that if the difference in mass between initial fragments is small then the mass difference

between final products will be small too. Following this de-excitation the mass numbers

will change and we expect a smooth transformation of ∆Ebh
A1A2

versus the variation of mass

difference ∆A = (A2 − A1): The new yields and mass numbers should be used for the final

estimate. This effect can be investigated in the framework of the evaporation model for large
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(A >
∼
16) hypernuclei developed in Ref. [45]. There was demonstrated that mostly neutrons

and other light normal particles will be emitted from hot large hyper-fragments, since the

hyperons have a larger binding energy. Such an effect should not change dramatically the

general form of the ∆Ebh
A1A2

dependence on ∆A. For small (A <
∼
16) hot hyper-fragments

formed in the freeze-out volume the most adequate model is the Fermi-break-up [24], sim-

ilar to the one for normal fragments. It was generalized for hypernuclei in Ref. [46]. The

consequences of these secondary decay processes will be the subject of our future studies.

V. CONCLUSION

During last six decades there is permanent increasing the number of measured hypernuclei

with their binding energies. However, the progress is very slow: Because of the special

requirements on targets in hadron and lepton induced reactions, the traditional hypernuclear

methods (e.g., the missing mass spectroscopy) can address only a small number of isotopes.

Also the development of the detectors for measuring nearly all produced particles with their

exact kinetic energies is very expensive and not always practical, that makes problems for a

desirable acceleration of the studies.

The suggested double ratio method is related to deep inelastic reactions producing all

kind of hypernuclei with sufficiently large cross-sections in the multifragmentation process.

This is a typical case for relativistic ion-ion and hadron-ion collisions. Only the identification

of hypernuclei is required, and, as demonstrated in recent ion experiments, there are effective

ways to perform it. The experimental extraction of the difference in the hyperon binding

energies between hypernuclei (∆Ebh
A1A2

) is a novel and practical way to pursue hypernuclear

studies. The advantage of this method over the traditional hypernuclear ones is that the

exact determination of all produced particles parameters (with their decay products) is not

necessary. Only relative measurements are necessary for this purpose, therefore, one can

address similar weak-decay chains and their products. For example, if we take the pairs

of large hyper isotopes, they undergo weak decay in a non-mesonic channel that can be

found by products far from the collision point with the vertex technique. The correlation

the produced isotopes and particles is an adequate information for the double ratios.

Even more interesting and important that with this method one can also determine

the difference of hyperon binding energies in double and multi-hypernuclei. This gives an

13
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access to hyperon-hyperon interactions and properties of multi-hyperon matter. It is very

difficult to measure the hyperon binding for exotic (neutron-rich and neutron-poor) nuclear

species within traditional hypernuclear experiments. On the other hand, the hypernuclei

with extreme isospin can be easily obtained in deep-inelastic reactions. Most of them may

have the statistical origin and the suggested method opens an effective way for extension of

the hypernuclear research.

We believe such kind of research would be possible at the new generation of ion accel-

erators of intermediate energies, as FAIR (Darmstadt), NICA (Dubna), and others. It is

promising that new advanced experimental installations for the fragment detection will be

available soon [47, 48].

Acknowledgments

The author thanks colleagues for stimulating discussions and support of hypernuclear

studies: M. Bleicher, N. Buyukcizmeci, J. Pochodzalla, K.K. Gudima, J. Steinheimer,

R. Ogul, E. Bratkovskaya, A. Sanchez Lorente, I.N. Mishustin, N.M. Sobolevsky.

[1] H. Bando, T. Mottle, and J. Zofka, Int. J. Mod. Phys. A5, 4021 (1990).

[2] O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, (2006) 564.

[3] J. Schaffner, C.B. Dover, A. Gal, C. Greiner, and H. Stoecker, Phys. Rev. Lett. 71, (1993)

1328.

[4] Special issue on Progress in Strangeness Nuclear Physics, Edt. A. Gal, O Hashimoto and J.

Pochodzalla, Nucl. Phys. A 881, (2012) 1-338.

[5] N. Buyukcizmeci, A.S. Botvina, J. Pochodzalla, and M. Bleicher, Phys. Rev. C 88, (2013)

014611.

[6] T. Hell and W. Weise, Phys. Rev. C 90, (2014) 045801.

[7] M. Danysz and J. Pniewski, Philos. Mag. 44, (1953) 348.

[8] The STAR collaboration, Science 328, (2010) 58.

[9] B. Dönigus et al. (ALICE collaboration), Nucl. Phys. A904-905, (2013) 547c.

[10] The PANDA collaboration, http://www-panda.gsi.de ; and arXiv:physics/0701090.

14



15

access to hyperon-hyperon interactions and properties of multi-hyperon matter. It is very

difficult to measure the hyperon binding for exotic (neutron-rich and neutron-poor) nuclear

species within traditional hypernuclear experiments. On the other hand, the hypernuclei

with extreme isospin can be easily obtained in deep-inelastic reactions. Most of them may

have the statistical origin and the suggested method opens an effective way for extension of

the hypernuclear research.

We believe such kind of research would be possible at the new generation of ion accel-

erators of intermediate energies, as FAIR (Darmstadt), NICA (Dubna), and others. It is

promising that new advanced experimental installations for the fragment detection will be

available soon [47, 48].

Acknowledgments

The author thanks colleagues for stimulating discussions and support of hypernuclear

studies: M. Bleicher, N. Buyukcizmeci, J. Pochodzalla, K.K. Gudima, J. Steinheimer,

R. Ogul, E. Bratkovskaya, A. Sanchez Lorente, I.N. Mishustin, N.M. Sobolevsky.

[1] H. Bando, T. Mottle, and J. Zofka, Int. J. Mod. Phys. A5, 4021 (1990).

[2] O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, (2006) 564.

[3] J. Schaffner, C.B. Dover, A. Gal, C. Greiner, and H. Stoecker, Phys. Rev. Lett. 71, (1993)

1328.

[4] Special issue on Progress in Strangeness Nuclear Physics, Edt. A. Gal, O Hashimoto and J.

Pochodzalla, Nucl. Phys. A 881, (2012) 1-338.

[5] N. Buyukcizmeci, A.S. Botvina, J. Pochodzalla, and M. Bleicher, Phys. Rev. C 88, (2013)

014611.

[6] T. Hell and W. Weise, Phys. Rev. C 90, (2014) 045801.

[7] M. Danysz and J. Pniewski, Philos. Mag. 44, (1953) 348.

[8] The STAR collaboration, Science 328, (2010) 58.

[9] B. Dönigus et al. (ALICE collaboration), Nucl. Phys. A904-905, (2013) 547c.

[10] The PANDA collaboration, http://www-panda.gsi.de ; and arXiv:physics/0701090.

14

[11] I. Vassiliev et al. (CBM collaboration). JPS Conf. Proc. 17, 092001 (2017).

[12] T.R. Saito et al. (HypHI collaboration), Nucl. Phys. A 881, (2012) 218.

[13] https://indico.gsi.de/event/superfrs3 (access to pdf files via timetable and key ’walldorf’).

[14] NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome ;

http://nica.jinr.ru/files/BM@N .

[15] A.S. Botvina and J. Pochodzalla, Phys. Rev. C 76, (2007) 024909.

[16] A.S. Botvina, K.K. Gudima, J. Steinheimer, M. Bleicher, I.N. Mishustin, Phys. Rev. C 84,

(2011) 064904.

[17] A.S. Botvina, K.K. Gudima, J. Pochodzalla, Phys. Rev. C 88, (2013) 054605.

[18] A.S. Botvina et al., Phys. Lett. B 742, (2015) 7.

[19] A.S. Botvina, K.K. Gudima, J. Steinheimer, M. Bleicher, and J. Pochodzalla. Phys. Rev. C95,

014902 (2017)

[20] Z.Rudy, W.Cassing et al., Z. Phys. A 351, (1995) 217.

[21] Th. Gaitanos, H. Lenske, and U. Mosel, Phys. Lett. B 675, (2009) 297.

[22] T.A. Armstrong et al., Phys. Rev. C 47, (1993) 1957.

[23] H. Ohm et al., Phys. Rev. C 55, (1997) 3062.

[24] J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, and K. Sneppen, Phys. Rep. 257,

(1995) 133.

[25] H. Xi et al., Z. Phys. A 359, 397 (1997).

[26] K. Turzo et al., Eur. Phys. J. A 21, 293 (2004).

[27] R.P. Scharenberg et al., Phys. Rev. C 64, (2001) 054602.

[28] J. Pochodzalla, Prog. Part. Nucl. Phys. 39, (1997) 443.

[29] R. Ogul et al., Phys. Rev. C 83, (2011) 024608.

[30] W. Greiner, Int. J. Mod. Phys. E5, 1 (1995).

[31] M.N. Saha, Proc. Royal Soc. A, 99, 135 (1921).

[32] A. Esser et al., Phys. Rev. Lett. 114, 232501 (2015).

[33] T. A. Armstrong et al. Phys. Rev. C70, 024902 (2004).

[34] W. Neubert and A.S. Botvina, Eur. Phys. J. A 17, 559 (2003).

[35] J. Schaffner-Bielich, Nucl. Phys. A 804, (2008) 309.

[36] H. Togashi et al., Phys. Rev. C93, 035808 (2016).

[37] J.P. Bondorf, A.S.Botvina, I.N. Mishustin. Phys. Rev. C58, R27 (1998).

15



16

[11] I. Vassiliev et al. (CBM collaboration). JPS Conf. Proc. 17, 092001 (2017).

[12] T.R. Saito et al. (HypHI collaboration), Nucl. Phys. A 881, (2012) 218.

[13] https://indico.gsi.de/event/superfrs3 (access to pdf files via timetable and key ’walldorf’).

[14] NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome ;

http://nica.jinr.ru/files/BM@N .

[15] A.S. Botvina and J. Pochodzalla, Phys. Rev. C 76, (2007) 024909.

[16] A.S. Botvina, K.K. Gudima, J. Steinheimer, M. Bleicher, I.N. Mishustin, Phys. Rev. C 84,

(2011) 064904.

[17] A.S. Botvina, K.K. Gudima, J. Pochodzalla, Phys. Rev. C 88, (2013) 054605.

[18] A.S. Botvina et al., Phys. Lett. B 742, (2015) 7.

[19] A.S. Botvina, K.K. Gudima, J. Steinheimer, M. Bleicher, and J. Pochodzalla. Phys. Rev. C95,

014902 (2017)

[20] Z.Rudy, W.Cassing et al., Z. Phys. A 351, (1995) 217.

[21] Th. Gaitanos, H. Lenske, and U. Mosel, Phys. Lett. B 675, (2009) 297.

[22] T.A. Armstrong et al., Phys. Rev. C 47, (1993) 1957.

[23] H. Ohm et al., Phys. Rev. C 55, (1997) 3062.

[24] J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, and K. Sneppen, Phys. Rep. 257,

(1995) 133.

[25] H. Xi et al., Z. Phys. A 359, 397 (1997).

[26] K. Turzo et al., Eur. Phys. J. A 21, 293 (2004).

[27] R.P. Scharenberg et al., Phys. Rev. C 64, (2001) 054602.

[28] J. Pochodzalla, Prog. Part. Nucl. Phys. 39, (1997) 443.

[29] R. Ogul et al., Phys. Rev. C 83, (2011) 024608.

[30] W. Greiner, Int. J. Mod. Phys. E5, 1 (1995).

[31] M.N. Saha, Proc. Royal Soc. A, 99, 135 (1921).

[32] A. Esser et al., Phys. Rev. Lett. 114, 232501 (2015).

[33] T. A. Armstrong et al. Phys. Rev. C70, 024902 (2004).

[34] W. Neubert and A.S. Botvina, Eur. Phys. J. A 17, 559 (2003).

[35] J. Schaffner-Bielich, Nucl. Phys. A 804, (2008) 309.

[36] H. Togashi et al., Phys. Rev. C93, 035808 (2016).

[37] J.P. Bondorf, A.S.Botvina, I.N. Mishustin. Phys. Rev. C58, R27 (1998).

15
[38] A. Kelic, J.B. Natowitz, K.-H. Schmidt. Eur. Phys. J. A30, 203 (2006).

[39] V.E. Viola et al. Nucl. Phys. A681, 267c (2001).

[40] R. Ogul, A.S.Botvina. Phys. Rev. C66, 051601(R) (2002).

[41] N. Buyukcizmeci et al. Eur. Phys. J. A25, 57 (2005).

[42] L. Pienkowski et al. Phys. Rev. C65, 064606 (2002).

[43] S.N. Soisson et al. J. Phys. G: Nucl. Part. Phys. 39, 115104 (2012).

[44] S. Hudan et al., Phys. Rev. C67, 064613 (2003)

[45] A.S.Botvina, N.Buyukcizmeci, A.Ergun, R.Ogul, M.Bleicher, J.Pochodzalla. Phys. Rev. C94,

054615 (2016)

[46] A.S. Lorente, A.S. Botvina, and J. Pochodzalla, Phys. Lett. B 697, (2011) 222.

[47] Th. Aumann, Progr. Part. Nucl. Phys. 59, (2007) 3.

[48] H. Geissel et al., Nucl. Inst. Meth. Phys. Res. B 204, (2003) 71.

16


	Preprint_INR_1435_2017_обл
	Preprint_INR_1435_2017

