Status and future prospect of long baseline experiments with J-PARC neutrino beam and near detectors

2019-Apr-25 INR, Moscow

K.Sakashita(KEK/J-PARC), M.Shiozawa(Kamioka observatory, U. of Tokyo),

M.Yokoyama (U. Tokyo)

Neutrinos

電磁気力 electromagnetic

強い力 strong

弱い力 weak

Ш

top

bottom

tau

tau neutrino

物質粒子

matter (fermions)

Π

charm

strange

muon

muon neutrino

higgstan.com

クォーク quarks

プレン tons up

down

- e

electron

electron neutrino

It's special, mysterious particle..

Its properties are of great importance in particle- and astro-physics

Neutrino oscillation

Flavor (weak eigenstate) of neutrino can be changed during the propagation

Happens only if the neutrino has a finite mass ($\Delta m^2 \neq 0$)

First firm evidence for neutrino oscillation

June 1998 NEUTRINO conference @ Takayama, Japan

T.Kajita

Amazing progress in ~20 years

1998, neutrino oscillation discovered by **Super-K** atmospheric neutrino observation

- Solar neutrino oscillation confirmed by SNO(2001) and KamLAND (2002)
- Accelerator-based neutrino oscillation experiments: K2K, MINOS, OPERA
- **T2K** experiment discovered $v_{\mu} \rightarrow v_{e}$ in 2011, Daya-bay discovered non-zero θ_{13} (established 3-flavor oscillation)

Experiments in Japan lead the world on neutrino oscillation physics 6

Present understanding of V oscillation

$$|\mathbf{v}_{\alpha}\rangle = \sum_{i=1}^{i=3} U_{\alpha i}^{*} |\mathbf{v}_{i}\rangle \qquad c_{ij} = \cos\theta_{ij}, s_{ij} = \sin\theta_{ij}$$

$$\bigcup_{\text{PMNS}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

All of the three mixing angle and two mass square differences are measured Next physics targets are : $(0.8 \ 0.5 \ 0.1)$

CP violation

- CP violation(CPV) is one of the 3 Sakharov's conditions to create the matter dominant universe
- The size of CPV (J_{CP}) in neutrino oscillation can be three order of magnitudes larger than one of the quark

$$J_{CP} \cong 0.0327 \sin \delta$$
 \checkmark J_{CP}~3x10⁻⁵ (quark)

CPV through δ may be sufficient source for the matter dominant universe [Nucl. Phys. B774 (2007) 1 &tc.]

Long baseline experiments with J-PARC same? Large size Water $Prob.(\nu_{\mu} \rightarrow \nu_{e}) ~~ Prob.(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ **Cherenkov detector** High intensity ν beam J-PARC Main Ring (KEK-JAEA, Tokai) Super-Kamiokande -20-5 T (ICRR, Univ. Tokyo) Hyper-Kamiokande Intermediate detector

 $\begin{array}{c} \mathbf{T2K} \rightarrow \mathbf{T2K-II} \rightarrow \mathbf{Hyper-Kamiokande} \\ \text{(2010~)} & \text{(2027~)} \end{array}$

T2K collaboration

International collaboration

(as of 2019 Jan. : ~500 members, 68 institutes, 12 countries)

Recently, CERN neutrino group has joined !

J-PARC & Neutrino beam-line

10 year anniversary this week!

• First beam to J-PARC beamline was delivered on April 23, 2009

Near Detectors

TPC

TPC2

TPC3

INGRID @ On-axis

ν beam direction, intensity measurement

Cooperation with Russia/INR SMRD detector for ND280

Baby-MIND/ WAGASCI detectors

SuperFGD for ND280 upgrade

Far detector (Super-K)

- 50kton water Cherenkov detector
- •ID:~II,000 x20inch PMTs
- Good e-like/µ-like separation
- •4π acceptance
- Refurbishment in summer 2018 for Gd loading (planned in 2019-2020)

Single ring e-like

Single ring µ-like

Super-K refurbishment in 2018

Operation resumed in Jan. 2019 (SK-V) No water leakage observed after refurbishment

Gd loading scheduled in the beginning of 2020

Accumulated POT and beam power

Accumulated 15.1x10²⁰ POT for neutrino mode and 16.5 x 10²⁰ POT for anti-neutrino mode (total POT corresponds to 40% of the T2K approved POT)

Latest results

Results with all the data collected in the 2010~2018 period (9years)

T2K-II

Toward discovery of CPV, we plan to accumulate more data up to 2x10²² POT by 2027 (J-PARC E65 [T2K-II])

J-PARC PAC stage-1 status

- Beam power upgrade to 1.3MW
- Near detector upgrade to reduce the total systematic error down from 6% to ~4%

Beam power upgrade to 1.3M Whieved Beam Power \propto 30GeV x # of protons x 1/T_{rep.} 0.425 power [MW] Shorten rep. rate + higher protons/pulse # of 2.2 x by upgrading protons - Main Power Supply [Funding started] **1 N**14 per pulse - **RF** Achieved Target - Beam dump etc. 248 Time Beam 0.5^{[sec} Extraction 1.3 power [MW] Injection # of 2.6 x 3.2 x protons 2.48s 1014 1014 per pulse Energy Rep. 2.48 Time 1.16 time [sec] 1.3s (→1.16s)

Main Ring status

- New power supply
 - Commissioning w/ an actual BM3 magnet was successfully performed \rightarrow 1.29 sec cycle was confirmed
- ► RF upgrade
 - New 2nd harmonic RF system for 1.32s operation was assembled

New 2nd harmonic cavity with 4 accelerating gaps

- A new power supply was designed with capacitor banks for the cycle of 1.3 s.
- The power supply for the BM3 family was constructed and installed at D4.
- It has been tested with the BM3 family

Upgrade plan of MR

Neutrino beamline upgrade toward I.3MW

Inaccessible part (decay volume, beam dump, etc) were designed and built for multi-MW

- Increasing cooling capability for the heat generated by beam (higher beam power)
 - : Horn, Target, He vessel etc.
- Accepting high repetition rate (~1Hz) beam
 - : Horn, DAQ
- Increasing capability of radio-active waste
 - : Radio-active water disposal capacity
- Realizing safe and stable operation
 - : Interlock, beam monitor,

primary beamline etc.

Horn upgrade

- Plan to upgrade the horn electric system to realize 1.16s repetition and higher current (present 250kA → 320kA)
- T2K P8 ver. 2 T2K PS ver. 2 - 320kA is also beneficial to V@320k 6.5kV@250kA reduce wrong sign flux New Old Current He Vessel New New New Horn3 Horn2 One horn - one power Horn1 supply - one pulsetransformer configuration wer supply (new) Power supply (new kV@320kA 5.6kV@320k 4kV@320k NP Proposed He Vessel New New Horn3 Horn2 Horn1

- Design and production of new target and horns with reinforcing cooling capability
- Fast DAQ for 1Hz operation w/ newly developed network-based ADC modules
- Upgrade of beam monitors

We are proceeding necessary R&D on high beam power facility with international and domestic cooperation

Improvement of maintenance scheme and New beam profile monitor R&D

Reinforcing cooling capability (target, horn etc.)

Near Detector upgrade

Replacing part of ND280 with new detectors to enhance capability

Super-FGD arXiv:1707.01785

- TDR submitted to PAC and reviewed (J-PARC & CERN)
- Strong collaboration of experts from Europe (incl. CERN), Japan and USA
- will be approved as CERN NP07

Aiming installation in 2021

High Angle-TPCs

- Atmospheric pressure TPC using the same gas mixture as the present TPC
- Main difference with the existing TPC: thin field cage, resistive Micromegas
- Large overlap with the TPC group
- Benefiting from ILC TPC developments and RD51

Beyond SK/T2K: The Next Generation

20% coverage with 50cm PMT

40% coverage with 50cm PMT

40% coverage with high-QE 50cm PMT

Nucleon Decay Experiment Neutrino Detection Experiment

Broad science program with Hyper-K

GeV

- Neutrino oscillation physics
 - Comprehensive study with beam and atmospheric neutrinos
- Search for nucleon decay
 - Possible discovery with ~×10 better sensitivity than Super-K
- Neutrino astrophysics
 - Precision measurements of solar v
 - High statistics measurements of SN burst V
 - Detection and study of relic SN neutrinos
- Geophysics (neutrino oscillography of interior of the Earth)

~100MeV

• Maybe more (unexpected)

Solarsupernova

3.5Me\

~20

Accelerator decay of Search MeV to TeV with a single detector

P

Atmospheri

Long baseline exp. with HK

- J-PARC beam (1.3MW), near and intermediate detectors, and Hyper-Kamiokande
 - Same beamline and far detector technique
 - Expertise with T2K will be directly applicable

Expected events at HK For I.3MW×I0years (10⁸sec), v:v=1.3

Neutrino mode: appearance

Antineutrino mode: appearance

for δ=0	Signal (vµ→ve CC)	Wrong sign appearance	ν _μ /ν _μ CC	beam Ve/Ve contamination	NC
v beam	I,643	15	7	259	134
⊽ beam	I,I83	206	4	317	196

Expected sensitivity: CP violation

- Exclusion of $sin\delta_{CP}=0$
 - ~8 $\sigma(6\sigma)$ for $\delta=\pm90^{\circ}(\pm45^{\circ})$
 - >3 σ (>5 σ) significance for ~76%(57%) of δ_{CP} space
- δ_{CP} resolution:
 - 23° for $\delta_{CP}=\pm90^{\circ}$
 - 7° for $\delta_{CP}=0^{\circ}$ or 180° Further enhanced by combination with atmospheric V

Seamless program of Japan-based experiments for study of CP-violation $T2K \rightarrow T2K-II \rightarrow HK$

Summary & Outlook

- With data collected so far, T2K reported an indication of large CPV in neutrino oscillation
 - J-PARC and neutrino beamline stably operated with ~500kW
- \bullet We plan to upgrade accelerator, beamline and near detectors aiming to detect neutrino CPV with 3σ sensitivity
- With Hyper-K, we will study CPV in more detail
- Your participation are highly welcome !!