

Супер С-тау фабрика: обзор, физическая программа

Виталий Воробьев, ИЯФ СО РАН

Семинар в ИЯИ, 14 февраля 2022

The SCT experiment

- Precision experiments with tau lepton and charmed hadrons, and search for BSM phenomena
- Electron-positron collider
 - Beam energy varying between 1.5 and 3.5 GeV
 - Luminosity $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ @ 2 GeV
 - Longitudinal polarization of the e^- beams
- > Universal particle detector
 - Tracking system
 - Crystal electromagnetic calorimeter
 - Particle identification system

SCT Collider parameters (2021 update)

Продолжается оптимизация динамической апертуры на низких энергиях

E(MeV)	1500 2000 2500 3000 3500					
Π (m)			632.94			
<i>F_{RF}</i> (MHz)			350			
q	740					
2θ (mrad)	60					
$\varepsilon_y/\varepsilon_x$ (%)			0.5			
eta_{χ}^{*} (mm)			100			
$eta_{\mathcal{Y}}^*$ (mm)			1			
α			2.2×10^{-3}			
I(A)	2	2	2	2	2	
$N_{e/bunch} \times 10^{10}$	9	8	8	9	10	
N _b	292	328	328	292	262	
U_0 (keV)	21	67	164	340	629	
<i>V_{RF}</i> (kV)	1600	2000	2000	2000	3400	
ν_s	0.0164	0.016	0.0142	0.013	0.0155	
δ_{RF} (%)	2	1.9	1.7	0.014	1.6	
$\sigma_e imes 10^3$ (SR/IBS)	0.28/1	0.4/0.7	0.47/0.62	0.57/0.61	0.66/0.68	
σ_s (mm) (SR/IBS)	4/13	5/10	7/9.4	9.5/10.2	9.2/9.4	
$\varepsilon_x(nm)$ (SR/IBS)	3/21	4.7/12.7	7.4/10.5	10.6/11.6	14.5/14.8	
$L_{HG} \times 10^{35} (cm^{-2}s^{-1})$	0.5	0.8	1	1	1	
ξ_x	0.008	0.009	0.009	0.007	0.008	
ξγ	0.11	0.12	0.11	0.092	0.084	
$ au_{\mathrm{Touschek}}$ (s)	3600	2900	2400	2600	6400	
τ_L (s)	3100	1900	1600	1700	1600	

Уникальность очарованного кварка

- 1. Единственный тяжелый *верхний* кварк, образующий адроны
- Чувствительность к НФ, связанной с верхними кварками
- Динамика сильного взаимодействия очарованного кварка плохо рассчитывается в КХД

2. Малость параметров осцилляций D-мезонов $\mathcal{O}(10^{-2})$

- о Наблюдение осцилляций *D* в 2012 году
- о Важна динамика на больших расстояниях
- о Нуль-тест для вкладов НФ в осцилляции

$$x\equiv rac{m_2-m_1}{\Gamma}$$
 , $y\equiv rac{\Gamma_2-\Gamma_1}{2\Gamma}$

- 3. Малость *СР*-нарушения в распадах очарованного кварка $\mathcal{O}(10^{-4})$
- о *СР*-нарушение в чарме обнаружено в 2019 году
- Матрица смешивания кварков почти действительная для первых двух поколений
- Нуль-тест для вкладов НФ в СР-нарушение

Уникальность au-лептона

1. Самый тяжелый лептон

о Потенциально более чувствителен к НФ, чем электрон и мюон

2. Единственный лептон, распадающийся в адроны

- Лаборатория для изучения сильного взаимодействия
- \circ Измерение фундаментальных параметров СМ: $lpha_{s}$, V_{us} , $m_{ au}$
- 3. Лаборатория для проверки модели электрослабого взаимодействия
- о Прецизионная проверка СМ в лептонных распадов тау

4. Лаборатория для поиска НФ

- Поиск нарушения *СР*-симметрии в рождении и в распадах тау
- о Поиск распадов тау с нарушением лептонного аромата
- о Поиск заряженного бозона Хиггса и т.д.

Диапазон энергии ССТФ

Очарованные адроны (без экзотики)

Физическая программа

ССТФ – эксперимент с широкой программой прецизионных измерений

Ключевые преимущества ССТФ

(помимо рекордной светимости)

- 1. Пороговое рождение пар *τ*-лептонов и очарованных адронов
- Хорошо определенное начальное состояние
- о Малая множественность частиц конечного состояния
- о Дополнительные кинематически ограничения

- 2. Продольная поляризация электронов в пучке
- Улучшение чувствительности к *СР*-нарушению
 в процессах с барионами и *т*-лептоном
- о Измерение угла Вайнберга

3. Рождение когерентных пар $D^{0}\overline{D}{}^{0}$

- О Измерение параметров осцилляций и СРнарушения с помощью уникальных методик
- о Измерение фаз амплитуд распадов

- 4. Полная реконструкция событий
- Великолепное подавление фона
 Измерение абсолютных вероятностей распадов очарованных адронов и *τ*-лептона

e^+e^- factories for flavor physics

Experiments with charmed hadrons

(Semi-)leptonic $D_{(s)}$ decays

$$\Gamma(D^+ \to l\nu) = \frac{G_F^2}{8\pi} f_D^2 m_l^2 m_D \left(1 - \frac{m_l^2}{m_D^2}\right) |V_{cd}|^2$$

- > Measurement of branching fractions : f_D , V_{cd} , V_{cs}
- Lepton universality test

Table 1: LFU test at BESIII with	(semi)leptonic D	decays.
----------------------------------	------------------	---------

	$R(D_s^+)$	$R(D^+)$	$R(K^{-})$	$R(\bar{K}^0)$	$R(\pi^{-})$	$R(\pi^0)$
SM	9.74(1)	2.66(1)	0.975(1)[31]	0.975(1)[31]	0.985(2)[31]	0.985(2)[31]
BESIII	9.98(52)	3.21(64)	0.978(14)	0.988(33)	0.922(37)	0.964(45)

Detailed study of the charmonium-like states

- Exiting QCD laboratory
- > Cross sections to be measured as function of \sqrt{s} :
 - $\circ \ e^+e^- \to J/\psi\pi^+\pi^-$
 - $\circ e^+e^- \to J/\psi \pi^0 \pi^0$
 - $\circ \ e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$
 - $\circ \ e^+e^- \to D\overline{D}, \ D^*\overline{D}, \ldots$
 - $\circ \ e^+e^- \to D \overline{D} \gamma$
 - $\circ \ e^+e^- \to D\overline{D}(n\pi)$
 - $\circ \ e^+e^- \to D_s^+D_s^-$
 - $\circ e^+e^- \to D_s^+D_s^-(n\pi)$
 - $\circ \ e^+e^- \to \Lambda_c \overline{\Lambda}_c$

Belle with ISR: PRL110, 252002 967 fb⁻¹ in 10 years running time

BESIII at 4.260 GeV: PRL110, 252001 0.525 fb⁻¹ in one month running time

10 years vs. 0.1 year vs. 1 day at SCT

Tau lepton

Leptonic au decays

Michel parametersTau polarization $\frac{d\Gamma(\tau^{\mp})}{d\Omega dx} \propto x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x) \mp \frac{1}{3}P_{\tau}\cos\theta_l\,\xi\sqrt{x^2 - x_0^2}\left[1 - x + \frac{2}{3}\delta\left(4x - 4 + \sqrt{1 - x_0^2}\right)\right]$

SCT with polarized electrons allows measurement the tau lepton Michel parameters with precision better then that of Belle II

Hadronic au decays

Spectral functions

$$\frac{d\Gamma(\tau^- \to \text{had } \nu_{\tau})}{d(\text{phsp})} = \frac{G_F^2}{4m_{\tau}} |V_{\text{CKM}}|^2 L_{\mu\nu} H^{\mu\nu}$$

- → Measuring $|V_{ud}|$, $|V_{us}|$, $\alpha_s(m_\tau)$, and m_s
- Testing the factorization of hadronic and leptonic currents
- Testing conserved vector current
- Hadronic vacuum polarization in the nonperturbative region

Second class currents

 $J^{PG} = 0^{+-} (a_0), 1^{++} (b_1), \dots$

> Highly suppressed by isospin ($\tau \rightarrow \eta^{(\prime)} \pi \nu$, ...)

[Rev. Mod. Phys. 78 (2006) 1043]

LFV and CPV with tau

$\tau \to \mu \gamma$

- Allowed in several BSM scenario, including SUSY, leptoquarks, technicolor, and extended Higgs models
- > $\mathcal{O}(10^{-9})$ reachable upper limit at SCT for the branching of $\tau \rightarrow \mu \gamma$
- > Requires excellent π/μ separation

CP symmetry breaking

> CPV in tau production

$$J_{EM} \propto F_1 \gamma^{\mu} + \left(\frac{i}{2m_{\tau}}F_2 + \gamma^5 F_3\right) \sigma^{\mu\nu} q_{\nu}$$

- \circ Current limit: $|d_{ au}| \lesssim 10^{-17} \ e \cdot {
 m cm}$
- Tau EDM with polarized electrons: $\sigma(d_{ au}) \sim 10^{-20} \ e \cdot {
 m cm}$
- > CPV in tau decays (e.g., $\tau \rightarrow K \pi \nu_{\tau}$)

Beam polarization is essential for these measurements [PRD 51 (1995) 5996]

Electroweak model
$$SU(2)_L \times U(1)_Y$$
 (Glashow, 1961)
 $A_\mu = B_\mu^0 \cos \theta_W + W_\mu^0 \sin \theta_W$
 $Z_\mu = W_\mu^0 \cos \theta_W - B_\mu^0 \sin \theta_W$
 $\sqrt{g^2 + {g'}^2}$
 e_{θ_W}
 g'

The Weinberg angle

J/ψ cross section asymmetry

> Interference between the $e^+e^- \rightarrow \gamma^*$, $Z \rightarrow J/\psi$ processes produces left-right asymmetry of the total cross section

$$A_{LR} \equiv \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = \frac{3/8 - \sin^2 \theta_{\text{eff}}^c}{2 \sin^2 \theta_{\text{eff}}^c \left(1 - \sin^2 \theta_{\text{eff}}^c\right)} \left(\frac{m_{J/\psi}}{m_Z}\right)^2 P_e$$
$$A_{LR} \approx 4.7 \times 10^{-4} P_e$$

- σ_+ (σ_-) is the total $e^+e^- \rightarrow J/\psi$ cross section for right- (left-)handed electrons
- $\circ P_e$ is the average electrons polarization, $P_e < 1$
- > Statistical precision with a one-year data set:

$$\frac{\sigma(\sin^2 \theta_{\text{eff}}^c)}{\sin^2 \theta_{\text{eff}}^c} \approx 0.3\%, \qquad \sigma(\sin^2 \theta_{\text{eff}}^c) \approx 5 \times 10^{-4}$$

- It tests weak interaction of the charm quark
- > An opportunity to observe deviation of the $\sin^2 \theta_{eff}^c$ from its value at Z peak (test of the EW model)

Физическая программа: обновление 2022

Оглавление

Введение

2 C 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	1 Cnext 1 1 1 1 1 1 1 2 M 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Coeros 1.3yuer 1.21 1.22 1.23 Tpoco 1.23 Tpoco 1.23 1.32 1.33 1.35	ния ниже порота $D\overline{D}$ жесствия жесствия $X_{coccusation}$ $Z_{coccusation}$ $Z_{coccusation}$ $Z_{coccusation}$ конния состояния $Z_{coccusation}$ конния состояния конструктика коараков (M.Avacon) к конструктика коараков конструктиристика
2 C 2 2 2 2 2 2 3 3 3 3 3 3 3 3	12 H 1 1 1 1 1 1 1 1 1 1 1 1 1	1.21 1.22 1.23 Tpocr Jerca Mogen 3.31 1.32 1.33 Ka D	ние часличичски состояний чараоння Х-состояния 2 ₄ -состояния 2 ₄ -состояния в коляторой хромодинализе в коляти устояния каранов и коляти устаник каранов гимские состояния Пломия Пибрацы Мактокарароные состояния.
2 C 2 2 2 2 2 2 3 3 3 3 3 3	1 1 1 1 1 2 1 3 3 2 2 2 2 2 2 2 2 2 2 2	1.21 1.22 1.23 Tpocr Herka Mogen Honor 1.3.1 1.3.2 1.3.3 Ka D	Х-состояния Z ₂ -состояния Z ₂ -состояния контих состояния в
2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	1 2 2 2 2 2 2 2 2 2 2 2 2 2	1.22 1.23 TPOCH Terka Moges Deson 1.3.1 1.3.2 1.3.3 Ka D	У-состояния Z ₂ -состояния коляна состояния ко.легких кварков (М.Ачасов) кварки в кваятовой хромодинализе конституетник кварков тические состояния Глюбица Мизгикарализано состояния.
2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	1 2000KC 21 J 22 M 23 S 2 2 2 2 2 2 2 2 2 2 2 2 2	1.2.3 Tpocy Terka Mogen 2.3.1 1.3.2 1.3.3 KA D	Z ₂ -состояния конки состояний из летких кварков (M.A-tacon) в конструктика карков и конструктика карков и поческие осстояния Позоний Побраца Макговадновые осстояния
€ 2222 € 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Спекс 11 Л 12 М 13 З 2 2 2 2 2 2 2 2 2 2 2 2 2	Tpoch lerka Mogen 23.1 1.3.2 1.3.3 Ka D	копни состояний из легких кварков (М.Ачасов) кварки в кватовой тромоцинализе конституетных кварков гиские состояния Глюбица Мастокварковые состояния мастокварковые состояния.
2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	21 J 22 M 23 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Тегкая Модел 2.3.1 1.3.2 1.3.3 ка D	е каркия в констроней троиходинализие в исполтруетных каралов тические состояния Плобрязы Маютокарадновые состояния
22	12 M 13 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Модел Экзот 2.3.1 1.3.2 1.3.3 1.3.3 1.3.3 1.3.3	ь конституентных кларков тенские состояния Танбрида Танбрида Магонавараковане состояния -месонов (B.Bopoficen)
* * * * * * * *	23 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Экзоп 2.3.1 2.3.2 1.3.3 ка D	тичкие состояния Глаоний Габрила Маютокаарионые состояния
 a a a a a a a a a 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.3.1 2.3.2 2.3.3 1.3.3 1.3.3	Глосний Гибрицы Мистокадриовые осстояния -месонов (В.Воробьев)
S 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.3.2 2.3.3 Ka D	Гибриды Многокларковые состояния -мезонов (В.Воробьев)
 3 3 3 3 3 	2 Рисли 1 В	2.3.3 Ka D	Многокварковые состояния -мезонов (В.Воробьев)
4 3 3 3 3 3	Ризи 1 В	Ka D	мезонов (В.Воробьев)
• * * * * *	Parat	Ka D	-мезонов (В.Воробьев)
10 10 10 10	1 H	Same mare	
10 10 10	2 0	100,000	GP
3 73		Этбор	D-мезонов в пороговом эксператменте
3	13 0	Inext	роскопня Д-мезовов
	4 B	Isnep	ение абсолютных вероятностей распадов
3	15 J	lento	нные и полулентонные распады <i>D</i> -мезонов
3	6 P	enu	е и запрелненные распады <i>D</i> -мезонов
3	17 0	Mettin	пание в системе нейтральных <i>D</i> -мезонов
	3	17.1	Ввеление
	3	172	Распалы некогерентных состояний
	3	17.3	Распалы когерентных пар D
	3	17.4	Anatus decuente $D \rightarrow K_{\pi}^{0}\pi^{+}\pi^{-}$
3	18 H	Hapwn	никие СР-симметрии в распалих D мезонов
3	9 1	Issee	ение сильных фаз в распалах очарованных альнов в нейтральные као-
		1 L	B. Horos, H. Haylon)
	3	191	Измерение сильных фаз с использованием полудентовных распалов ней-
			TTATIANZY KNOHOR
	3	192	Измерение сильных фаз с использованием СР-собственного конечного
			состояния нейтрального каона
	3	193	Оценка потенциальной точности измерения сильных фаз
	3	1.9.3	Оценка потенциальной точности измерения сильных фаз
			6

4 9	Рарованные барионы (Т.Углов)	70
1	.1 Измерение форм-факторов очарованных барионов	11
1	12 Пояск СР-нарушений в распадах очаровамных барионов	73
5 4	Diranca 7, acurrona (/I Emichanon)	75
٠.,	1 Decision	75
-	2 Caulerna 7, sermas	76
	5.2.1 Division nerround variation travers	76
	5.2.2 Macra z. serrosa	77
	5.2.3 Drawn warmen r. sarroun	78
	5.2.4 Электический и магнитный липольные моменты т. лептика	79
	3 Tarrenna narmani r. narrenn	81
	5.3.1. Объбленные старстота залиженного стабото взанадействия	81
	532 Обызные зептояные тасталы т. зептоны	83
	5.3.3 Развалисяные лептонные распалы 7-лептона	84
	53.4. Пятичистичные знитовные распалы т. лептона	86
1	4 Алтономе распалы т-лептона	89
	5.4.1 $\tau \rightarrow P^- \mu_c (P = \tau, K)$	89
	5.4.2 $\tau^- \rightarrow P^- \nu_{\tau} \gamma \mu \tau^- \rightarrow P^- \ell^+ \ell^- \nu_{\tau}, (P = \tau, K; \ell = \epsilon, \mu)$	90
	5.4.3 $\tau^- \rightarrow \pi^- \pi^0 p_\tau$	91
	5.4.4 Поиск токов второго класса в алронных распалах 7-лентова	92
	5.4.5 Адронные распады 7 в состояния с каонами в конечном состоянии	94
1	5 СР-нарушение в распадах т-лептона	97
1	6 Нарушение лептонного аромата в распадах т-лептона	101
1	.7 Измерение параметров Мишеля в распадих $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_r$ с распадами моова	
	на лету (Д. Бодров)	102
5 1	Тэмерение сечения $e^+e^- \rightarrow$ адроны	106
7.7	Двухфотопная физика (В.Дружинии)	110
	Inner Hand deserve a second second	
٠,	1. Hereromic> (s d) ² to	112
3	12 Herenomi e -a ultil e -a un e -a uni	117
1	a nependar com the calle carrier contraction of the	
3ax	JB04008380	121
	7	
	7	
	7	
	7	
	7	
	7	
	7	_
	7	

- > 2021: ≈ 40 страниц
- > 2022: ≈ 120 страниц
- Около 10 активных авторов
 из ФИАН и ИЯФ
- > Редакторы:
 - о Г.В. Пахлова (ФИАН)
 - о А.Е. Бондарь (ИЯФ)

Скоро на <u>sct.inp.nsk.su</u>

Регулярные международные совещания с обсуждением физической программы эксперимента

Workshops on future super charm tau factories:

- 1. December 2017, Novosibirsk (link)
- 2. March 2018, Beijing (link)
- 3. May 2018, Novosibirsk (link)
- 4. December 2018, Orsay (link)
- 5. November 2019, Moscow (<u>link</u>) + 1st general WP5 meeting
- 6. November 2020, Hefei (online, link)
- 7. November 2021, Novosibirsk (hybrid, <u>link</u>) as 5th general WP5 meeting

CREMLINplus WP5 meetings:

- 8. 2nd general WP5 meeting, September 2020 (online, <u>link</u>)
- 9. 3rd general WP5 meeting, February 2021 (online, <u>link</u>)
- 10. 4th general WP5 meeting, July 2021 (online, <u>link</u>)
- 11. The SCT Partnership kick-off meeting, November 18th, 2021 (link)

The SCT Partnership (SCTP)

Ivan Logashenko IB Chair

Pavel Pakhlov Russian Spokesperson

A Annex 1. The Partners

List of all Partners. To be updated each time a new Partner has joined.

Country	Affiliation	LoI signing
		date
Germany	Justus Liebig University (JLU) Giessen	2021.09.22
Russia	Novosibirsk State Technical University (NSTU)	2021.09.24
Russia	Novosibirsk State University (NSU)	2021.10.11
Russia	P.N. Lebedev Physical Institute of Russian	2021.10.11
	Academy of Science (LPI RAS)	
Russia	Budker Institute of Nuclear Physics (BINP)	2021.10.13
Russia	Lomonosov Moscow State University Skobeltsyn	2021.10.29
	Institute of Nuclear Physics (SINP MSU)	
Mexico	Physics Department, Center for Research and Advanced	2021.11.12
	Studies (Cinvestav)	
International	Joint Institute for Nuclear Research (JINR)	2021.11.15
Russia	Higher School of Economics (HSE) University	2021.11.15
Russia	Institute of Nuclear and Radiation Physics (INRP) RFNC-	2021.11.16
	VNIIEF	
	Table 1: Undeted on November 18, 2021	

- 18 ноября 2021 запущено Партнерство, в задачи которого входит:
 - 1. Подготовка технического проекта детектора
 - 2. Развитие физической программы эксперимента
 - 3. Разработка правил работы для будущей полноценной коллаборации
- <u>sct.inp.nsk.su/partnership</u>

Заключение

- Прецизионные эксперименты (а не энергетический предел) будет определять актуальное состояние физики частиц в ближайшие десятилетия
- 2. Физическая программа ССТФ уникальная и разнообразная
- ССТФ первая фабрика тяжелых ароматов с поляризованным пучком электронов
- 4. Развитие физической программы ССТФ естественный и организационно самый простой способ сотрудничества

Backup

Прецизионное измерение вероятностей распадов и поиск запрещенных распадов *D*-мезонов

Поиск редких распадов *D*-мезонов

Изучение нарушения *СР*-симметрии в распадах *D*-мезонов

Единственный эксперимент, чувствительный с *CP*-асимметрии в распадах *D*-мезонов на уровне $\mathcal{O}(10^{-3})$ в десятках конечных состояний, в том числе с нейтральными частицами в конечном состоянии

Ключевые задачи — лучшая мировая точность

Систематическое изучение нарушения *СР*-симметрии в распадах *D*-мезонов

Прецизионное изучение Лоренц-структуры слабого заряженного тока в распадах $au o l ar{
u} u$

Всестороннее изучение феноменологии сильного взаимодействия в непертурбативной области

Tetraquark

diquark-diantiquark

Glueball

Измерение угла Вайнберга – прецизионная проверка электрослабой модели

Leptonic au decays

Michel parameters

$$\frac{d\Gamma(\tau^{\mp})}{d\Omega dx} \propto x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x) \mp \frac{1}{3}P_{\tau}\cos\theta_l\,\xi\sqrt{x^2 - x_0^2}\left[1 - x + \frac{2}{3}\delta\left(4x - 4 + \sqrt{1 - x_0^2}\right)\right]$$

SCT with polarized electrons allows measurement the tau lepton Michel parameters with precision better then that of Belle II

 $x \equiv$

Lepton universality test

$$\Gamma(\tau^- \to \nu_\tau l^- \bar{\nu}_l) = \frac{G_\tau G_l m_\tau^5}{192\pi^3} f\left(\frac{m_l^2}{m_\tau^2}\right) r_{\rm EW}$$

Parameter	Expectation	Best measurement
$\frac{\mathcal{B}(\tau^- \to \nu_\tau \mu^- \bar{\nu}_\mu)}{\mathcal{B}(\tau^- \to \nu_\tau e^- \bar{\nu}_e)}$	0.972564 ± 0.000010	0.9796 ± 0.0016 ± 0.0036 [BaBar, PRL 105 (2010) 051602]

Статус Стандартной модели ФЭЧ

- Стандартная модель (СМ) самая успешная физическая теория на данный момент
 - Калибровочные поля: переносчики взаимодействий
 - Поля материи: три поколения лептонов и кварков
 - Механизм Хиггса
- Границы применимости СМ
 - Темная материя
 - Масса нейтрино
 - Барионная асимметрия Вселенной
 - Проблема иерархий (почему бозон Хиггса такой легкий?)
 - Загадка аромата: почему три поколения? 18 (25) параметров!
 - ...
- Поиск Новой физики (НФ)
 - СМ может оказаться низкоэнергетичным приближением более общей и красивой теории
 - Наша задача обнаружить явления, которые откроют дорогу к построению более общей теории

Эксперименты с очарованными адронами

Leptonic au decays

Michel parametersTau polarization $\frac{d\Gamma(\tau^{\mp})}{d\Omega dx} \propto x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x) \mp \frac{1}{3}P_{\tau}\cos\theta_l\,\xi\sqrt{x^2 - x_0^2}\left[1 - x + \frac{2}{3}\delta\left(4x - 4 + \sqrt{1 - x_0^2}\right)\right]$

SCT with polarized electrons allows measurement the tau lepton Michel parameters with precision better then that of Belle II

Leptonic au decays

Michel parameters

$$\frac{d\Gamma(\tau^{\mp})}{d\Omega dx} \propto x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x) \mp \frac{1}{3}P_{\tau}\cos\theta_l\,\xi\sqrt{x^2 - x_0^2}\left[1 - x + \frac{2}{3}\delta\left(4x - 4 + \sqrt{1 - x_0^2}\right)\right]$$

SCT with polarized electrons allows measurement the tau lepton Michel parameters with precision better then that of Belle II

Lepton universality test

$$\Gamma(\tau^- \to \nu_\tau l^- \bar{\nu}_l) = \frac{G_\tau G_l m_\tau^5}{192\pi^3} f\left(\frac{m_l^2}{m_\tau^2}\right) r_{\rm EW}$$

Parameter	Expectation	Best measurement
$\frac{\mathcal{B}(\tau^- \to \nu_\tau \mu^- \bar{\nu}_\mu)}{\mathcal{B}(\tau^- \to \nu_\tau e^- \bar{\nu}_e)}$	0.972564 ± 0.000010	0.9796 ± 0.0016 ± 0.0036 [BaBar, PRL 105 (2010) 051602]

Release of the software framework for SCT detector

- ✓ The Aurora Software Framework v.1.0.0 is released
 - The framework is essential for designing the detector and studying the physics case
- ✓ The development was reported on the vCHEP21 conference. Proceedings are published

Fig. 1. Main data flows and operations in the detector software.

Hadronic au decays

Spectral functions

$$\frac{d\Gamma(\tau^- \to \text{had } \nu_{\tau})}{d(\text{phsp})} = \frac{G_F^2}{4m_{\tau}} |V_{\text{CKM}}|^2 L_{\mu\nu} H^{\mu\nu}$$

- → Measuring $|V_{ud}|$, $|V_{us}|$, $\alpha_s(m_\tau)$, and m_s
- Testing the factorization of hadronic and leptonic currents
- Testing conserved vector current
- Hadronic vacuum polarization in the nonperturbative region

Second class currents

 $J^{PG} = 0^{+-} (a_0), 1^{++} (b_1), \dots$

> Highly suppressed by isospin ($\tau \rightarrow \eta^{(\prime)} \pi \nu$, ...)

[Rev. Mod. Phys. 78 (2006) 1043]

LFV and CPV with tau

$\tau \to \mu \gamma$

- Allowed in several BSM scenario, including SUSY, leptoquarks, technicolor, and extended Higgs models
- > $\mathcal{O}(10^{-9})$ − reachable upper limit at SCT for the branching of $\tau \to \mu \gamma$
- > Requires excellent π/μ separation

CP symmetry breaking

> CPV in tau production

$$J_{EM} \propto F_1 \gamma^{\mu} + \left(\frac{i}{2m_{\tau}}F_2 + \gamma^5 F_3\right) \sigma^{\mu\nu} q_{\nu}$$

- Current limit: $|d_{\tau}| \lesssim 10^{-17} \ e \cdot \mathrm{cm}$
- Tau EDM with polarized electrons: $\sigma(d_{ au}) \sim 10^{-20} \ e \cdot {
 m cm}$
- > CPV in tau decays (e.g., $\tau \rightarrow K \pi \nu_{\tau}$)

Beam polarization is essential for these measurements [PRD 51 (1995) 5996]

Измерение угла Вайнберга

2

> Interference between the $e^+e^- \rightarrow \gamma^*$, $Z \rightarrow J/\psi$ processes produces left-right asymmetry of the total cross section

$$A_{LR} \equiv \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = \frac{3/8 - \sin^2 \theta_{\text{eff}}^c}{2 \sin^2 \theta_{\text{eff}}^c \left(1 - \sin^2 \theta_{\text{eff}}^c\right)} \left(\frac{m_{J/\psi}}{m_Z}\right)^2 P_e$$
$$A_{LR} \approx 4.7 \times 10^{-4} P_e$$

- σ_+ (σ_-) is the total $e^+e^- \rightarrow J/\psi$ cross section for right- (left-)handed electrons
- $\circ~P_e$ is the average electrons polarization, $P_e < 1$
- > Statistical precision with a one-year data set:

$$\frac{\sigma(\sin^2 \theta_{\rm eff}^c)}{\sin^2 \theta_{\rm eff}^c} \approx 0.3\%, \qquad \sigma(\sin^2 \theta_{\rm eff}^c) \approx 5 \times 10^{-4}$$

- > It tests weak interaction of the charm quark
- > An opportunity to observe deviation of the $\sin^2 \theta_{eff}^c$ from its value at Z peak (test of the EW model)

The factory colliders

completed in operation being designed

(Semi-)leptonic $D_{(s)}$ decays

$$\Gamma(D^+ \to l\nu) = \frac{G_F^2}{8\pi} f_D^2 m_l^2 m_D \left(1 - \frac{m_l^2}{m_D^2} \right) |V_{cd}|^2$$

- > Measurement of branching fractions : f_D , V_{cd} , V_{cs}
- Lepton universality test

Table 1: LFU test at BESIII with	(semi)leptonic D	decays.
----------------------------------	------------------	---------

	$R(D_s^+)$	$R(D^+)$	$R(K^{-})$	$R(\bar{K}^0)$	$R(\pi^{-})$	$R(\pi^0)$
SM	9.74(1)	2.66(1)	0.975(1)[31]	0.975(1)[31]	0.985(2)[31]	0.985(2)[31]
BESIII	9.98(52)	3.21(64)	0.978(14)	0.988(33)	0.922(37)	0.964(45)

Detailed study of the charmonium-like states

- Exiting QCD laboratory
- > Cross sections to be measured as function of \sqrt{s} :
 - $\circ \ e^+e^- \to J/\psi \pi^+\pi^-$
 - $\circ \ e^+e^- \to J/\psi\pi^0\pi^0$
 - $\circ e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$
 - $\circ \ e^+e^- \to D\overline{D}, \ D^*\overline{D}, \ldots$
 - $\circ \ e^+e^- \to D \, \overline{D} \gamma$
 - $\circ \ e^+e^- \to D\overline{D}(n\pi)$
 - $\circ \ e^+e^- \to D_s^+D_s^-$
 - $\circ e^+e^- \to D_s^+D_s^-(n\pi)$
 - $\circ \ e^+e^- \to \Lambda_c \overline{\Lambda}_c$

10 years vs. 0.1 year vs. 1 day at SCT

CPV in charm

- > Measurement of CP asymmetries in decays of D^0 , D^+ , D_s^+ at the precision level of $\sim 10^{-4}$
 - Advantage of full event reconstruction
 - Coherent $D^0\overline{D}^0$ pairs

CLEOc 0.818 fb⁻¹ @ 3774 MeV [PRD 81, 052013 (2010)]

long-distance dynamics is important in charm decays: re-scattering leads to the complex connections between the worlds of hadrons and quarks [I. Bigi] 43

The use of coherent $D^0\overline{D}^0$ pairs

Accessing the phases

- A pair of neutral D mesons produced at threshold carries photon quantum numbers $J^{PC} = 1^{--}$: $\psi_{DD} \propto D_1^0 \overline{D}_2^0 + C D_2^0 \overline{D}_1^0$, C = -1
- The interference term gives access to the phase difference between D^0 and \overline{D}^0 decay amplitudes

 $\delta_{K\pi} \equiv \arg\left(\frac{\mathcal{A}(\overline{D}^0 \to K^- \pi^+)}{\mathcal{A}(D^0 \to K^- \pi^+)}\right)$

- Coherence factors and CP content of multibody decay amplitudes
- \circ Phases of the $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

Essential input for B factories and LHCb

Accessing the charm mixing

- Measuring charm mixing with quantum correlations
 - Charm mixing cancels at first order for the coherent decays
 - $\Gamma_{ij} \propto |\langle i|D_2\rangle \langle j|D_1\rangle \langle i|D_1\rangle \langle j|D_2\rangle|^2 + \mathcal{O}(x^2,y^2)$
 - Charm mixing contributes to non-coherent *time-integrated decays* $\Gamma_{i} \propto |\langle i|D \rangle|^{2} (1 - y \operatorname{Re} \lambda_{f} - x \operatorname{Im} \lambda_{f}) + \mathcal{O}(x^{2}, y^{2})$
- Several unique techniques to measure charm mixing and CP violation in charm based on this phenomenology
- Access to the $\mathcal{C}=+1$ state with $e^+e^- \rightarrow D^0\overline{D}{}^0\gamma$
 - Charm mixing contribution is doubled instead of being cancelled!

Tau lepton

45

Charm mixing

Measuring charm mixing with combination of coherent and incoherent D^0 decays

- > CLEO-c [1]: 0.82 fb⁻¹ @ $\psi(3770)$
 - Joint analysis of 261 processes
 - First measurement of $\sin \delta_{K\pi}$ $y = (4.2 \pm 2.0 \pm 1.0)\%$ $R_D = (0.533 \pm 0.107 \pm 0.045)\%$ $\cos \delta_{K\pi} = +0.81 \pm 0.22 \pm 0.07$ $\sin \delta_{K\pi} = -0.01 \pm 0.41 \pm 0.04$

[1] Phys. Rev. D86 (2012) 112001

TABLE III. D final states reconstructed in this analysis. [1]

Coherent $D^0\overline{D}^0$ pair decays

 $\Gamma(i,j) \propto |\langle i|D_2 \rangle \langle j|D_1 \rangle - \langle i|D_1 \rangle \langle j|D_2 \rangle|^2 + \mathcal{O}(x^2, y^2)$

Туре	Reconstruction	Final states
\overline{f}	Full	$K^{-}\pi^{+}, Y_{0} - Y_{7}$
\bar{f}	Full	$K^+\pi^-,ar{Y}_0^ar{Y}_7^-$
S_+	Full	$K^+K^-,\ \pi^+\pi^-,\ K^0_S\pi^0\pi^0$
S_+	Partial	$K^0_L \pi^0, K^0_L \eta, K^0_L \omega$
S_{-}	Full	$K^0_S\pi^0,K^0_S\eta,K^0_S\omega$
S_{-}	Partial	$K^0_L \pi^0 \pi^0$
ℓ^+	Partial	$K^- e^+ \nu_e^-, K^- \mu^+ \nu_\mu$
ℓ^-	Partial	$K^+e^-ar{ u}_e,K^+\mu^-ar{ u}_\mu$

Λ formfactors

$$e^+e^- \rightarrow J/\psi \rightarrow [\Lambda \rightarrow p\pi^-][\overline{\Lambda} \rightarrow \overline{p}\pi^+]$$

$$\alpha \equiv \frac{s \left| G_{\rm M}^{\psi} \right|^2 - 4m_{\Lambda}^2 \left| G_{\rm E}^{\psi} \right|^2}{s \left| G_{\rm M}^{\psi} \right|^2 + 4m_{\Lambda}^2 \left| G_{\rm E}^{\psi} \right|^2}, \qquad \Delta \Phi \equiv \arg\left(\frac{G_{\rm E}^{\psi}}{G_{\rm M}^{\psi}} \right), \qquad \alpha_1, \alpha_2$$

> CP asymmetry in
$$\Lambda \to p\pi^-$$
:
 $A_{\Lambda} \equiv \left| \frac{\alpha_1 + \alpha_2}{\alpha_1 - \alpha_2} \right| \lesssim 5 \times 10^{-5}$

 \circ SM limit:

$$A_{\Lambda} \lesssim 5 \times 10^{-5}$$

 \circ Expected precision:

 $\sigma(A_{\Lambda}) = 1.2 \times 10^{-4}$

Cotur	SCT one-year σ (10^{-4})						
Setup	P_e	α	$\Delta \Phi$ (rad)	$lpha_i$			
$5D P_e = 0$	Fixed	1.5	3.1	2.8			
$5D P_e = 0.8$	1.3	1.2	1.6	0.9			
$3D P_e = 0.8$	4.3	1.2	2.4	3.4			

Charm decay rates

Time-dependent

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Incoherent} \\ D^{*\pm} \rightarrow D\pi^{\pm}, & B \rightarrow DX, & e^+e^- \rightarrow c\bar{c} \rightarrow D\overline{D}X, & pp \rightarrow c\bar{c}X \\ |\langle f|\mathcal{H}|D^0(t)\rangle|^2 = e^{-\Gamma t} |\mathcal{A}_f|^2 [1 - (y \operatorname{Re}\lambda_f + x \operatorname{Im}\lambda_f)\Gamma t] + \mathcal{O}(x^2, y^2) \\ & \star |\langle f|\mathcal{H}|D^0\rangle|^2 \propto |\mathcal{A}_f|^2 (1 - y \operatorname{Re}\lambda_f - x \operatorname{Im}\lambda_f) + \mathcal{O}(x^2, y^2) \end{array} \end{array}$$

Time-integrated

Coherent (at rest)

 $e^{+}e^{-} \rightarrow D^{(*)0}\overline{D}^{(*)0}, \quad \mathcal{C}+: D^{0}\overline{D}^{0}\gamma, \quad \mathcal{C}-: D^{0}\overline{D}^{0}(\pi^{0})$ $\langle ij|\mathcal{H}|D^{0}\overline{D}^{0}\rangle \propto \langle i|\mathcal{H}|D^{0}\rangle\langle j|\mathcal{H}|\overline{D}^{0}\rangle + \mathcal{C}\langle i|\mathcal{H}|\overline{D}^{0}\rangle\langle j|\mathcal{H}|D^{0}\rangle$ $|\langle ij|\mathcal{H}|D^{0}\overline{D}^{0}\rangle|^{2} \propto |\mathcal{A}_{i}|^{2} |\mathcal{A}_{j}|^{2} [|\zeta_{\mathcal{C}}|^{2} + (1+\mathcal{C})(x \operatorname{Im}(\xi_{\mathcal{C}}^{*}\zeta_{\mathcal{C}}) - y \operatorname{Re}(\xi_{\mathcal{C}}^{*}\zeta_{\mathcal{C}}))] + \mathcal{O}(x^{2}, y^{2})$ $\xi_{\mathcal{C}} \equiv \frac{p}{q}(1+\mathcal{C}\lambda_{i}\lambda_{j}), \quad \zeta_{\mathcal{C}} \equiv \frac{p}{q}(\lambda_{j}+\mathcal{C}\lambda_{i})$

Model-independent Dalitz analysis

Charm mixing measurement using $D^0 \rightarrow K_S^0 \pi^+ \pi^$ $e^+e^- \rightarrow \psi(4040) \rightarrow D\overline{D}^*$ > Coherent $\mathcal{C} = -1$: $D^0 \overline{D}^{*0} \rightarrow D^0 \overline{D}^0 \pi^0$ $M_{ij}^{-} = K_{i}K_{-j} + K_{-i}K_{j} - 2 \sqrt{K_{i}K_{-j}K_{-i}K_{j}(C_{i}C_{j} + S_{i}S_{j})}$ > Coherent $\mathcal{C} = +1: D^0 \overline{D}^{*0} \to D^0 \overline{D}^0 \gamma$ $M_{ij}^{+} = K_i K_{-j} + K_{-i} K_j - 2 \sqrt{K_i K_{-j} K_{-i} K_j (C_i C_j + S_i S_j)}$ $+2K_{i}\sqrt{K_{i}K_{-i}}(yC_{i}-xS_{i})+2K_{-i}\sqrt{K_{i}K_{-i}}(yC_{i}+xS_{i})$ $+2K_i \sqrt{K_j K_{-j} (yC_j - xS_j) + 2K_{-i} \sqrt{K_j K_{-j} (yC_j + xS_j)}}$ > Incoherent $D^-D^{*+} \rightarrow D^-D^0\pi^+$ $K_i' = K_i + \sqrt{K_i K_{-i}} (yC_i + xS_i)$

Phys. Rev. D68, 054018 (2003)
 Phys. Rev. D82, 034033 (2010)
 Phys. Rev. D82, 112006 (2010)
 JHEP 04 (2016) 033

Model-independent Dalitz analysis

Charm mixing measurement using $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

- ► Time-dependent analysis: [1,2] $\mathcal{P}_D(t,i) \propto e^{-\Gamma t} \left[K_i - \Gamma t \sqrt{K_i K_{-i}} (C_i y + S_i x) \right]$ $\mathcal{P}_{\overline{D}}(t,i) \propto e^{-\Gamma t} \left[K_{-i} - \Gamma t \sqrt{K_i K_{-i}} (C_i y - S_i x) \right]$
- > C_i and S_i are measured at threshold [3]
- > x and y are the charm mixing parameters

> LHCb [4]: 1.0 fb⁻¹ @ 7 TeV,
$$D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K_S^0 \pi^+ \pi^+$$

 $x = (-0.86 \pm 0.53 \pm 0.17)\%$
 $y = (+0.03 \pm 0.46 \pm 0.13)\%$

Phys. Rev. D68, 054018 (2003)
 Phys. Rev. D82, 034033 (2010)
 Phys. Rev. D82, 112006 (2010)
 JHEP 04 (2016) 033

Precision experiments at electron-positron collider Super Charm-Tau Factory

Rodher INF Messachirak

Contact persons: Eugenie Levichev (E.B.Levichev@inp.nsk.su), Alexander Bo Yury Tikhonov (Jouri, Tikhonov@cern.ch), Ivan Logashenko

Abstract

This document describes research program of bulker MP (bio the next two docates based on the flapship project of the Charm-Tau (IGT) factory. The SCT factory is designed to oper range from 2 to 6 deV with peak humoistry of 10⁴⁰ cm⁻¹ polarization of the electron beam at the interaction region potential. The facting, requiped an with a state-of-the-art us procession measurements of decays of tau lepton and hadrons t generation.

December 2018

Precision experiments at Super Charm-Tau Factory Letter of Interest for Snowmass 2021

 M.N. Ardunev, F.E.M. Baldan, V.E. Binner, J.A.Y. Baleran, J.A.Y. Banarangkar, ¹A.R. Bondari, A.F. Bundarolav, ¹M. Cherney, ¹A.C. Kharlmony, ¹LN. Kony, ¹C.R. Karperov, ¹C.R. Konzelle, ¹N. Garmanh, ¹B. Sharkov, ¹A.R. Kharlmony, ¹LN. Kangerov, ¹LN. Kangerov, ¹LN. Karperov, ¹LN. Kangerov, ¹LN. Karperov, ¹LN. Sharkov, ¹LN. Sharkov,

 Nabida P. A. Gayan * A.O. Polarskova ²⁰ O.B. Molychow * V. Smolck ²⁰ and K. Aolog²¹ ¹Bodie Institute of Weater Paper, Neurolock, 60000, Bosis ¹Bodie Institute of Weater Paper, Neurolock, 60000, Bosis ³Bodie Institute of Weater Paper, Neurolock, 60000, Bosis ³Polarshow States: Extended States and Neurolock, 60000, Bosis ³Polarshow States: Extended States and Neurolock, 60000, Bosis ³Polarshow States: States and States and States and States ⁴Polarshow States and States and States and States ⁵Polarshow States and States and States and States ⁵Polarshow States and States and States and States ¹Datas and States and States and States and States ¹Datas and States and States and States and States ¹Datas and States and States and States and States ¹Datas and States and States and States and States ¹Datas and States and States and States and States ¹Datas and States and States and States and States ¹Datas and States and States and States and States ¹Datas and States and States and States and States ¹Datas and States and States and States and States Const. Republic ¹Datas and States and States and States and States Const. Republic ¹Datas and States and States and States Const. Republic ¹Datas and States and States and States Const. Republic ¹Datas and States and States and States and States Const. Republic ¹Datas and States and States and States and States Const. Republic ¹Datas and States and States and States and States Const. Republic ¹Datas and States and States and States and States Const. Republic ¹Datas and States and States and States and States Const. Republic ¹Datas and States and States and States and States Const. Republic ¹Datas and States and States States States Ander States States States and States ¹Datas States and States

¹⁰Geethe University Frankfurt, 60323 Frankfurt an Main, Cernang, and GRI Helmholtzmatre for Banay lon Banarish Onlift, 6(20) Dermatak, Clernang ²⁰Sardar VidiaMahar Astronal Institute of Technology Swatt SPADT, Coyver, India.

Snow Mass 2021

European Strategy for Particle Physics Update

The SCT physics potential is reflected in Physics Briefing book: <u>arXiv:1910.11775</u> [hep-ex]

Snowmass2021

- Letter of intent for SCT is signed by 100 colleagues from 38 organizations (including 10 Russian organizations)
- > The 2021 goal: writing white papers