Search for heavy neutrinos in the ND280 near detector of the T2K experiment

Alexander Izmaylov, Sergey Suvorov

High Energy Physics Department Seminar, Troitsk

4.04.2016

2 /24

Heavy neutral leptons

- Heavy Neutral Leptons (HNL) or heavy sterile neutrinos proposed to solve some problems of the Standard Model (SM) (i.e. vMSM <u>arXiv:050.3065</u>)
- Explain neutrino masses, baryon asymmetry, dark matter
- Different mass regions:
 - $10^9 \div 10^{14}$ GeV: GUT scales, Baryon asymmetry generation
 - $10^2 \div 10^3$ GeV: can study at LHC energy scales
 - $10^{-3} \div 10^2$ GeV: masses of already known leptons and quarks **This region studied in current work**
 - \sim eV: neutrino oscillation anomalies

How to find HNL

- Mixing between HNL and active neutrinos leads to:
 - their production in decays of heavy mesons
 - HNL decays into SM particles

- Two ways for experimental search:
 - direct measurement of meson decays: e.g. modified kinematics w.r.t. SM decays with $m_{\vartheta} = 0$
 - signal $\sim |U|^2$
 - search for decay products of HNLs originating in intense beam of "ordinary" neutrinos → T2K ND280 corresponds to this case
 - signal $\sim |U|^4$

4 /24

Previous constraints

- Interested in region $100 MeV < M_{HNL} < 500 MeV$
- Best current limits:
 - <u>PS191</u> (CERN experiment, 1980-s)
 - <u>E949 (</u>BNL, 2015)
- Some <u>hints</u> that that T2K experiment can improve limits

5 /24

T2K experiment

- The T2K (Tokai-to-Kamioka) accelerator long-baseline neutrino oscillation experiment
- Study (anti-)neutrino oscillations $\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu} \rightarrow \nu_{\mu}$,
- Neutrino and antineutrino beam from mesons' decays (π, K)

HNL in kaon decays

- Other reactions: $N \rightarrow \gamma \nu$, $N \rightarrow \nu \pi^0$, $N \rightarrow 3\nu$.
- We study products of HNL decay with ND280: Number of events ~ |U|⁴

T2K near detector ND280

- Off-axis detector at 280 meters from target station
- Contains:
 - 3 Time Projection Chambers (TPC)
 - 2 Fine Grained Detectors (FGD)
 - Electromagnetic Calorimeter (ECal)
 - Side Muon Range Detector (SMRD)
 - UA1 magnet
- Optimized for tracking and PID at 1GeV

Analysis plan

- Active neutrino interactions \rightarrow main background for HNL search
- Look for decay in TPC filled with Ar → reduce the impact from active neutrino interactions
- Background: gas interactions and reconstruction failures
 - poor knowledge of Ar cross-section at ~1 GeV
- Optimize cuts to eliminate background
- "Zero signal strategy" assume all observed events are BG and put C.L. limits on mixing elements

HNL flux simulation

- Use flux from $K\mu 2 \ (K \rightarrow \mu \nu)$
- Reweight $K\mu^2$ flux for HNL:
 - Massive lepton kinematic

• HNL branching ratio $\Gamma(K \to lN) = \rho(M_{HNL})\Gamma(K \to l\nu)|U|^2$

HNL decay in ND280

- Number of signal events estimated from:
 - HNL flux $\phi(\text{HNL}/10^{21}\text{p.o.t/cm}^2)$
 - detector front area S_{det}
 - probability of HNL decay inside TPC P_{decay}^{TPC}
 - decay mode branching ratio Br_{mode}

 $N_{\text{events}} = \varphi(\text{HNL}/10^{21} \text{p.o.t/cm}^2) \cdot S_{det} \cdot P_{decay}^{TPC} \cdot Br_{mode}$

11/24

Expected sensetivity

$$|U|^2_{limit} = \sqrt{\frac{U_{C.L.}}{N_{events}}}$$
, no BG $\rightarrow U_{C.L.} = 2.44$ (Feldman Cousins)

- PS191 limits
- Asaka et al prediction (arXiv:1212.1062) ("theoretical estimation")
- Full MC simulation
- Assume 10²¹ POT, no background, 100% efficiency, 90% C.L.

$$|Ue|^2$$
 $|U\mu|^2$ $|UeU\mu|$

HNL Selection

- Recon two-tracks' vertex in TPC FV, good quality,
- Tracks of opposite charge
- PID: *eπ* or *μπ*
- Invariant mass cut 250 \div 700 *MeV* for $\mu\pi$ and 140 \div 700 *MeV* for $e\pi$
- At least one track use vertex TPC
- No other activity in vertex TPC
- No activity in upstream detectors
- Kinematics cuts: tracks opening angle, HNL candidate polar angle.

Example of signal event simulation. HNL decay in TPC1.

HNL Time of Flight

• T2K beam 8 bunches $\sigma \sim 19 ns$

HNL Selection Efficiency

- Limited by detector design:
 - Low efficiency at TPC edges
 - Pion interactions
 - Small relative angle between tracks → TPC tracking limitations

Charge conjugated modes

- T2K collects data with different horn polarity $(6.2\nu + 2\overline{\nu})10^{20}POT)$
- Assume Majorana cases of HNL, look for both $K^{\pm} \rightarrow l^{\pm}N, N \rightarrow l^{\mp}\pi^{\pm} \rightarrow$ increase statistic for analyse

MC background study

- Use MC to estimate BG. Checks with
 - GENIE (2.27 · 10²¹ POT)
 - NEUT (6.5 · 10²¹ POT)
- NEUT 10²¹ *POT* equivalent
- 1. $\mu\pi$ mode 4.6
- *2.* $e\pi$ mode 3.23
- GENIE
- *1.* $\mu\pi$ mode 4
- *2.* $e\pi$ mode 1.76
- NEUT $\overline{\nu}$
- 1. $\mu\pi$ mode 3.4
- *2.* $e\pi$ mode 1.3

 MC estimation at data statistics

 For $(6.2\nu + 2\overline{\nu})10^{20}POT$

 2010-1015 ND280

 $\mu\pi$ 3.34

 $e\pi$ 2.83

MC background study with NEUT

- BG origin for $\mu\pi$ mode:
- μπ 1.
- 2. $\mu\pi + X$

 $\mu p + (X)$ 3.

4. $\pi^{-}\pi^{+} + X$ 2. 5. $\eta \rightarrow \pi^+ \pi^- \pi^0$ 2.6

- 6. $\Lambda \rightarrow \pi^- p + X$ 2.0
- 7. $K^0 S \rightarrow \pi^+ \pi^-$ 5.2%
- $8. \quad K^0 L \to \mu \pi + X$ 2.6%
 - 9. δray spoils 10.3% μ track

ode:	• E	3G origin for $e\pi$ mode:	
41%	1.	$\pi^0 \to 2\gamma \to e^- e^+ + X$	۷
23%	2.	$\delta - ray from \mu$	1
7.7%	3.	μπ	
2.6%	4.	$\delta - ray$ spoils	
2.6%		μ track	
2.6%			

18 /24

Systematics

Predicted events in ND280:

$$N_{\text{events}} = \varphi(\text{HNL}) \cdot \frac{V_{TPC}}{c\beta\gamma} \cdot \Gamma_{decay} \cdot Eff_{det}$$

- $\varphi(HNL)$ HNL flux, affected by kaon flux systematics V_{TPC} fiducial volume of TPC Γ_{decay} HNL decay width for current mode
- *Eff_{det}* detector efficiency, affected by detector systematics

Flux systematics

- Largest impact from *K*⁺ multiplicity measurements (NA61)
 - also affects from focusing, target position etc.
- Expect uncertainties $\leq 30\%$

Г

Detector system	$ \begin{bmatrix} 0.2 \\ 0.18 \\ 0.18 \\ 0.18 \end{bmatrix} \xrightarrow{N \to \mu\pi} \xrightarrow{+ \text{ variation}} + \text{ Charge ID} $		
	μπ	еπ	→ + TPC cluster → + TPC track
Variation-Like	20.14 + TPC FGD match 0.12 + GV eff		
Distortions of magnetic field	0.17%	0.13%	0.1 + + SI Pion
TPC momentum scale	0.1%	0.1%	0.06
TPC momentum resolution	0.99%	0.74%	
TPC dE/dx particle ID	0.43%	1.67%	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Efficiency-like	. 0.24		
TPC cluster efficiency	<<1%	<<1%	$ \begin{array}{c} 0.24 \\ 0.22 \\ 0$
TPC tracking efficiency	0.3%	3%	+ + TPC cluster + + TPC track + + TPC EGD match
TPC charge ID efficiency	5.95%	6.22%	$\begin{array}{c} 0.14 \\ 0.12 \\ 0.12 \\ \end{array}$
TPC-FGD matching efficiency	0.69%	0.82%	
Pion secondary interactions	2.67%	2.43%	
Global Vertexing	0.87%	0.79%	
Total	7.48%	8.11%	260 280 300 320 340 360 380 400 420 440 460 48 Mass, MeV

$|U|^2$ limits with ND280

- MC efficiency, background, systematics $\rightarrow |U|^2$ limits
- $(6.2\nu + 2\overline{\nu})10^{20}POT$ statistics (2010-2015 ND280 data)
- $|U|^2$ limits estimated from observed events (Feldman Cousins):

$$U = U_n \left(1 + E \frac{\sigma^2}{2} \right) \left(1 + \left(E \frac{\sigma}{2} \right)^2 \right)$$

where k_n is CL limit for observed n events (no syst), $E = k_n - n$, σ - acceptance RMS

$|U|^2$ limits based on MC

 Red - previous PS191 limit, scaled to HNL Majorana nature Green – 90% CL ND280 estimation

 $(6.2\nu + 2\overline{\nu})10^{20}POT$ statistics (2010-2015 ND280 data)

__10^{__}

 10^{-7}

 10^{-8}

 10^{-9}

 10^{-10}

0.26

0.28

0.3

← Full MC → PS191

0.36

0.38

 $\begin{array}{c} K \to \mu N \to \mu(\mu\pi) \\ |U\mu|^2 \end{array}$

0.32 0.34

Signal samples

generation

23 /24

Conclusion

- MC study of HNL production and decays in ND280
- Developed HNL selection \rightarrow study efficiency and BG with MC
- Studied detector systematics
- $|U|^2$ expected limits estimated with MC
- Ready for data analysis

Able to improve previous limits in high mass region

$|U\tau|$ limits

 $|U\tau|$ element is poor studied

 $v_{e,\mu,\tau}$

Reaction $N \to l^- l^+ v_{e,\tau}$ through NC provide study $|Ue| \sqrt{|Ue|^2 + |U\tau|^2}$,

assume $|U\mu| \ll |Ue|$

Pile up

- Possible pile up sources:
 - No activity in upstream detector
 - No activity in TPC with HNL candidate vertex

- Study real data for pile up value
- Chose the maximum pile up from all runs for each TPC
 - 3.3% TPC1
 - 3.2% TPC2
 - 2.8% TPC3

Invariant mass resolution

M = 0.36 GeV

M = 0.46 GeV

BG

HNL decay

2-body decay:

3-body decay:

NC

 $N \to \mu^{\mp} e^{\pm} \nu_{e,\mu}$ $N \to l^{-} l^{+} \nu_{l}$

 $N \to e^{-}\pi^{+}$ $N \to \mu^{-}\pi^{+}$

 $N \rightarrow l^- l^+ v_{e,\mu,\tau}$

Assume 10²¹ POT, no background, 100% efficiency, 90% C.L

Angle cuts

PID cuts

