Рабочее совещание по регистрации Темной материи ИЯИ РАН

Сцинтилляционный криогенный детектор 40Ca100MoO4 коллаборации AMORE: исследование безнейтринного двойного бета распада Мо-100 и поиск WIMP

В.Н.Корноухов ГНЦ ИТЭФ

27 марта 2012 г.

Коллаборация AMoRE

(Advanced Mo based Rare process Experiment)

Korea (39) Seoul National University: H.Bhang, S.Choi, M.J.Kim, S.K.Kim, M.J.Lee, S.S.Myung, S.Olsen, Y. Sato, K.Tanida, S.C.Kim, J.Choi, H.S.Lee, S.J.Lee, J.H.Lee, J.K.Lee, X.Li, J.Li, H.Kang, H.K.Kang, Y.Oh, S.J.Kim, E.H.Kim, K.Tshoo, D.K.Kim(24) Sejong University: Y.D.Kim, E.-J.Jeon, K. Ma, J.I.Lee, W.Kang, J.Hwa (5) Kyungpook national University: H.J.Kim, J.So, Gul Rooh, Y.S.Hwang(4) KRISS: Y.H.Kim, M.K.Lee, H.S.Park, J.H.Kim, J.M.Lee, K.B.Lee (6)

• Russia (16)

ITEP(Institute for Theoretical and Experimental Physics) : V.Kornoukhov, P. Polozov, N.Khanbekov (3) Baksan National Observatory : A.Ganggapshev, A.Gezhaev, V.Gurentsov, V.Kuzminov, V.Kazalov, O.Mineev, S.Panasenko, S.Ratkevich, A.Verensnikova, S.Yakimenko, N.Yershov, K.Efendiev, Y.Gabriljuk (13)

Ukraine(11)

INR(Institute for Nuclear Research) : F.Danevich, V.Tretyak, V.Kobychev, A.Nikolaiko, D.Poda, R.Boiko, R.Podviianiuk, S.Nagorny, O.Polischuk, V.Kudovbenko, D.Chernyak(11)

- China(3)
 - Tsinghua University : J.Li, Y. Li, Q.Yue(3)
- Germany(3)
 University of Heidelberg : C.Enss, A. Fleischmann, L. Gastaldo (3)

Основание коллаборации: октябрь 2009

На сегодняшний день коллаборация объединяет:

5 стран 9 институтов 72 участника

Основная цель коллаборации AMoRE

Мотивация:

 $Q_{\beta\beta} = 3034$ кэВ: самая высокая энергия процесса среди ДБР-изотопов, которые могут быть произведены в количестве десятков-сотен килограм центрифужным методом (только в России!);

<u>Детектор</u>: на основе криогенного сцинтилляционного монокристалла ${}^{40}\text{Ca}{}^{100}\text{MoO}_4$ с использованием обогащённого изотопа ${}^{100}\text{Mo}$ и кальция обеднённого по изотопу ${}^{48}\text{Ca}$.

Какой детектор нужен, что бы достичь $T_{1/2}^{0\nu} \approx 10^{26} - 10^{27}$ лет ($\langle m_{\beta\beta} \rangle \approx 0.05 - 0.02$ эВ)?

Чувствительность (период полураспада $T_{1/2}$) 2 β экспериментов:

$$T_{1/2} \propto \varepsilon \cdot \delta \sqrt{rac{m \cdot t}{R \cdot BG}}$$

 ϵ – detection efficiency

 $\delta-\text{abundance}$ of candidate nuclei in the detector

- m mass of detector
- t-time of measurements
- R energy resolution
- BG background
- ~50-100 кг изотопа ¹⁰⁰Мо, ~ 400 800 сцинтилляционных элементов
- ультранизкое содержание опасных радиоактивных примесей:

²²⁶Ra (²¹⁴Bi) ≤ 0.1 мБк/кг, ²²⁸Th ≤ 0.05 мБк/кг

- высокое энергетическое разрешение < 1% (на уровне разрешения для ППД)
- 5-10 лет набора данных

Выбор ядер-мишеней для регистрации WIMP: пример коллаборации CRESST

Development of cryogenic phonon detectors based on $CaMoO_4$ and $ZnWO_4$ scintillating crystals for direct dark matter search experiments

I. Bavykina ^{a,*} G. Angloher ^a D. Hauff ^a M. Kiefer ^a F. Petricca ^a F. Pröbst ^a ^aMax-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 Munich, Germany

Преимущества ⁴⁰Са¹⁰⁰МоО₄

- <u>Физические преимущества</u>:
- 1) калориметрический детектор: «детектор ≡ источник» → высокая эффективность (~ 90%) регистрации полезных событий;
- 2) высокое содержание рабочего изотопа (~50% по массе) в соединении (стехиометрическое отношение);
- 3) технология производства (метод Чохральского) позволяет добиться высокой чистоты выращиваемых кристаллов → существенное снижение внутреннего фона от ²³⁸U-, ²³²Th-рядов;
- 4) энергетическое разрешение, сравнимое с разрешением для ППД (3-6 кэВ для фононного режима), подавлен вклад от фона 2ν2β-распада ¹⁰⁰Мо;
- 5) высокий световыход (до 9300 фотон/МэВ);
- 6) возможность анализа сигнала с целью подавления α-фона от поверхностного и приповерхностного загрязнения;
- 7) возможность увеличения масштабов экспериментов, путём последовательного добавления монокристаллов в установку.
- <u>Преимущества производства</u>:
- 1) в России налажено промышленное производство центрифужным методом стабильных изотопов в количестве десятков-сотен килограм, в том числе изотопов молибдена;
- 2) на предприятии РосАтома уже имеется изотоп ⁴⁰Ca, обедненного по изотопу ⁴⁸Ca (как побочный продукт наработки изотопа ⁴⁸Ca).

Производство монокристаллов ⁴⁰Ca¹⁰⁰MoO₄

- Т_{пл} = 1445 °С (Рt или lr тигель)
- Разработка технологии роста кристаллов началась в 2004 году.
- Для выращивания кристаллов используется метод Чохральского.
- Скорость вытягивания 1÷5 мм/час

•Основные этапы производства: 1) шихта: 2) до отжига: 3) после:

2004 год: первые кристаллы

- размеры CaMoO4 кристаллов до 15 см³;
- световыход ~ 400 фотонов/МэВ;
- Невысокая прозрачность (наблюдается полоса поглощения около 395 нм).
- ²¹⁴Bi(²³⁸U) = 286 мБк/кг
- ²³²Th (²⁰⁸Tl) < 25 мБк/кг

Результат работы (2007 год)

• Сцинтилляционный цилиндрический кристалл CaMoO4 на основе природных компонент с размерами D40x40 мм.

Последние результаты: обогащённые кристаллы ⁴⁰Са¹⁰⁰МоО₄

- Получены сцинтилляционные элементы на основе обогащённых кристаллов.
- D(42 x 40) x 42 мм, масса 269 г

Прозрачность:

 L = 90 см при 530 нм (максимум высвечи сцинтилляции)

Световыход:

 LY = 9300 фотонов/МэВ, сравним с лучшими СаМоО4 монокристаллами на природном сырье

Кинетика сцинтилляций, основная компонента:

- $\tau_{rt} = 16,5$ мкс (комнатная температура),
- τ_{cr} = 345 мкс (8 К и ниже)

Энергетическое разрешение сцинтилляционного элемента C35 (661 кэВ, Cs-137)

Измерения энергетического разрешения проводились в подземной лаборатории ЯнгЯнг (Корея). Полученное значение разрешения 15,6 % при энергии 661 кэВ (¹³⁷Cs).

Активная защита установки состояла из 14 кристаллов Csl, просматривавшихся 14 ФЭУ, для пассивной защиты вокруг установки располагался слой свинца, толщиной 10 см. Для снижения фона от атмосферного ²²²Rn установка продувалась азотом.

НРGе измерения на Баксанской нейтринной обсерватории ИЯИ РАН

Comm1a	Isotope			
Sample,	⁴⁰ K	$^{228}Ac = (^{232}Th)$	208 Tl [(232 Th)]*	214 Bi = (238 U)
material	Specific activity, Bq/kg			
Mo oxide, ¹⁰⁰ MoO ₃	$(5,3\pm0,8)\cdot10^{-2}$	≤ 3,8 ·10 ⁻³	$\leq 1,0.10^{-3}$ [$\leq 2,8.10^{-3}$]	≤ 2 ,3·10 ⁻³
Calcium carbonate, ⁴⁰ CaCO ₃	$(7,3\pm3,1)\cdot10^{-2}$	(1,6±0,2)·10 ⁻¹	$(4,4\pm3,6)\cdot10^{-3}$ [(1,2±1,0)·10 ⁻²]	$(2,6\pm0,2)\cdot10^{-1}$
Single crystal SB-29 ⁴⁰ Ca ¹⁰⁰ MoO ₄	≤ 1 ,2*10 ⁻²	≤3,1*10 ⁻³	$\leq 8,3*10^{-4}$ [$\leq 2,4\cdot 10^{-3}$]	≤6,4*10 ⁻³
Calcium formate, Ca(HCOO) ₂	<= 7,0*10 ⁻³	<= 3,0*10 ⁻³	$<= 8,9*10^{-4}$ [$<= 2,5*10^{-3}$]	<= 1,7*10 ⁻³

В результате применения двойной перекристаллизации во время производства монокристаллов удалось добиться очистки от опасных р/а примесей ≥ **35 раз.**

Фоновый спектр сцинтилляционного элемента СБ28 β-α decay in ²³⁸U

²¹⁴Bi (Q-value : 3.27-MeV) \rightarrow ²¹⁴Po (Q-value : 7.83-MeV) \rightarrow ²¹⁰Pb $\alpha - \alpha$ decay in ²³²Th ²²⁰Rn (Q-value : 6.41-MeV) \rightarrow ²¹⁶Po (Q-value : 6.91-MeV) \rightarrow ²¹²Pb

Криогенный сцинтилляционный детектор AMoRE

- Рабочая температура детектора: ~ десятки мК.
- При взаимодействии заряженной частицы в сцинтилляционном кристалле появляется сцинтилляционный и фононный сигналы. В эксперименте планируется снимать оба сигнала и затем проводить их анализ с целью подавления альфа-фона от поверхностного и приповерхностного загрязнения.

Разработка криогенного детектора на основе ${}^{40}Ca{}^{100}MoO_4$ MMC — Metallic Magnetic Calorimeter

Парамагнитный сенсор Au:Er

Для измерения температуры (фононного сигнала) абсорбера (кристалла ⁴⁰Ca¹⁰⁰MoO₄) в эксперименте планируется использование сенсоров из парамагнитных материалов — MMC-сенсоров. MMC-сенсоры, находясь в постоянном магнитном поле, изменяют свою намагниченность при изменении температуры.

Намагниченность сенсора считывается системой квантовых магнетометров — SQUID. Системы SQUID и MMC калориметры производятся в Гейдельбергском университете, группа физиков из которого недавно присоединилась к коллаборации AMORE.

Криогенные измерения с использованием образца ⁴⁰Ca¹⁰⁰MoO₄

Проведены первые криогенные измерения с образцом ⁴⁰Ca¹⁰⁰MoO₄ размерами 1 см х 0,7 см х 0,6 см. Температура: 13 – 100 мК Р/а источник ²⁴¹Am:

lpha-частицы и Е $_{\gamma}$ = 59,5 кэВ

Криогенные измерения с полноразмерным элементом

 Разработана установка для проведения эксперимента с полноразмерным элементом (40х40 мм). Проведены первые измерения.

Position dependence

- Geometric approach.
- Analytic approach.

Подземная лаборатория ЯнгЯнг (Корея)

(Upper Dam)

- Located in a tunnel of Yangyang Pumped Storage Power Plant Korea Middleland Power Co.
- Minimum vertical depth : 700 m
- Access to the lab by car (~2km)
- In operation since 2003

Experiments:

- KIMS: DM search exp. in operation
- AMORE: DBD Search exp. in preparation (additional laboratory space in design)

Чувствительность сцинтилляц. криогенного СаМоО4 детектора

- 0.5% FWHM \rightarrow 15 keV FWHM for low temp.
- 5 years, 100 kg ${}^{40}Ca^{100}MoO_4$: $T_{1/2} = 3.0 \times 10^{26}$ years \rightarrow <m> = 20 70 meV

Принцип разделения изотопов: центрифужный метод

СВЕТЛАНА, ЭХЗ

А.Н.Шубин (1939 - 2008)

Са-40 обедненный по Са-48: мотивация

Промышленный э/м сепаратор СУ20 ВГУП «Комбинат Электрохимприбор»

- В наличии: 33 кг Са-40 (⁴⁰CaCO₃)
- Ca-48 < 0,001%
- достаточно для проведения эксперимента со 150 кг Мо-100
- каждый год производится по 4 - 5 кг Са-40

Результаты

- 1) В России создана технология производства низкофоновых монокристаллов ⁴⁰Ca¹⁰⁰MoO₄ большого объема и весом ≈ 0,6 кг и сцинтилляционных элементов на их основе. В результате применения двойной перекристаллизации во время роста кристаллов проведена очистка от опасных р\a примесей в ≥ 35 раз. Достигнутая удельная активность опасных изотопов ²¹⁴Bi(²³⁸U) и ²²⁸Th(²³²Th) ~ 0,08 мБк/кг и 0,07 мБк/кг соответственно, что позволяет приступить к проведению эксперимента.
- 2) Имеющиеся образцы показали хорошие результаты при сертификации. Достигнута прозрачность L = 90 см при 530 нм (максимум высвечивания сцинтилляции), световыход на уровне высвечивания монокристаллов из природного сырья.
- 2) В России имеется запас обогащенного изотопа ⁴⁰Ca (обедненного по ⁴⁸Ca) и возможность наработки изотопа ¹⁰⁰Мо в количествах ≈ десятки и сотни кг. Это позволяет планировать эксперимент по поиску 0n2b- распада ¹⁰⁰Мо с общей массой ⁴⁰Ca¹⁰⁰MoO₄ от 100 кг (от 50 кг ¹⁰⁰Mo).
- 3) Проведены измерения энергетического разрешения монокристаллов ⁴⁰Ca¹⁰⁰MoO₄ при мКтемпературе. Получено энергетическое разрешение (11,2 кэВ для E_α = 5,48 МэВ) и низкий энергетический порог для небольших образцов. При измерениях с большим кристаллом (D 40 мм х 40 мм) получено отношение сигнала к шуму лучше чем 0.29% FWHM (для Eα = 5,48 МэВ).
 - 5) Планируемая чувствительность эксперимента с криогенным сцинтилляционным детектором на основе ⁴⁰Ca¹⁰⁰MoO₄ и массой 100 кг за 5 лет сбора данных: Т_{1/2}^{0v} = 3*10²⁶ лет.

⁴⁰Ca¹⁰⁰MoO₄ & БНО:?

- Запланирована 1-я фаза эксперимента AMORE по поиску БДБР изотопа Mo-100 (сцинтилляционный режим при RT)
- ???: 1-я фаза эксперимента AMORE по поиску БДБР изотопа Mo-100 (криогенный режим при 20 мК). Масса – до 10 кг кристаллов (масштаб CRESST/Curichino).
 Одновременно: поиск WIMP
- Поиск WIMP с использованием CaMoO4 и CaWO4 (природный состав):
- с массой 10 кг (масштаб ~ CRESST/Curichino)
- ✤ С массой до 1 000 кг (масштаб ~ CUORE)

⁴⁰Са¹⁰⁰МоО₄ и СаМоО₄ эксперименты на БНО ИЯИ РАН

Масштаб эксперимента: от 10 кг до 1 000 кг

- Производство изотопов (масштаб от десятков до сотен кг): Россия
- Производство монокристаллов 40Са100МоО4, СаМоО4, (CaWO4, ZnMoO4): Россия
- Развитие высокотехнологичных отраслей в РФ и создание рабочих мест в этих отраслях
- Поступление налогов в бюджет РФ
- Привлечение молодежи из российских вузов и НИИ к участию в долгосрочном (10 – 20 лет) "высокотехнологичном" эксперименте.

Дополнительные слайды

Analytic approach (Pulse shape analysis)

²³⁸U/²³²Th decay chains

Зависимость сцинтилляционных свойств ${}^{40}Ca^{100}MoO_4$ от температуры

Dr. V.B. Mikhailik Department of Physics, University of Oxford Oxford OX1 3RH, UK

Параметр	T=295 K	T=8 K
Световыход (относительно референсного СаМоО ₄ *), %	105±39	106±32
Постоянная распада (главная компонента), мкс	16.5±0.3	345±25

* Образец Са
MoO $_4$ произведённый Carat в 2006 г.

Проводились независимые измерения световыхода образцов (1 см х 1 см х 1 см) обогащённых кристаллов в широком диапазоне температур. Световыход сравнивался со значениями лучшего образца природного кристалла.

Регистрация рр-нейтрино от Солнца

AMoRE: full scale experiment

