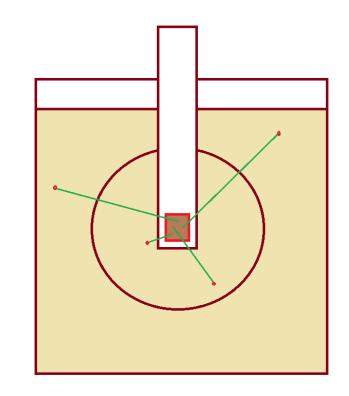
Измерение примесей в материале источника 51 Cr по анализу спектров фотонов в эксперименте BEST

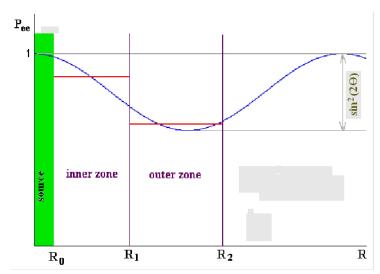
В.Горбачёв ГГНТ, БНО ИЯИ РАН

Эксперимент BEST

Галлиевая аномалия:

Подавление скорости захвата нейтрино в Ga экспериментах SAGE и GALLEX с источниками 51 Cr и 37 Ar R=0.87±0.05

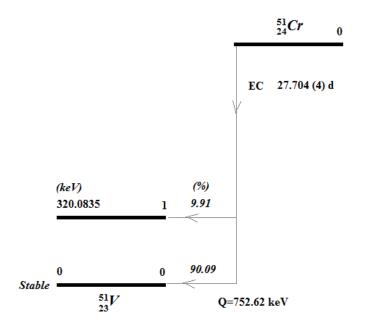

Проверка гипотезы стерильных нейтрино:


$$P_{ee} = 1 - \sin^2 2\theta \cdot \sin^2 (1.27 \frac{\Delta m^2 (eV^2) \cdot L(m)}{E_{\nu} (MeV)})$$

2-зонная Ga мишень – 7.5 и 42 т Пробег в каждой зоне ~53 см

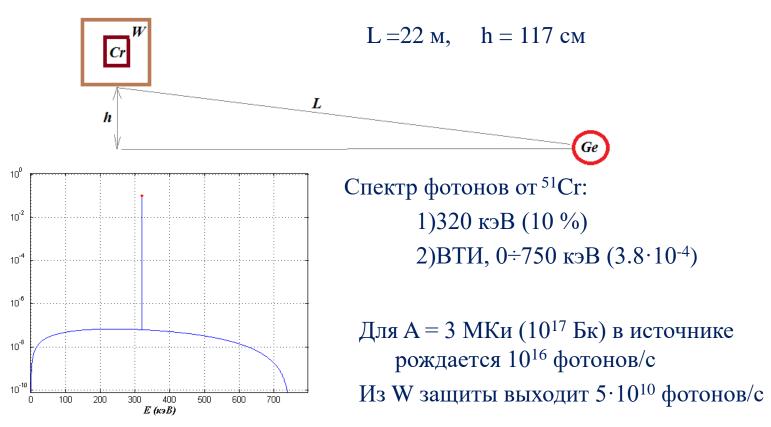
Ga эксперименты с источниками на новом уровне:

- Введена чувствительность к расстоянию (разделение мишени на 2 зоны)
- Увеличена масса мишени (48 т вместо 13 т)
- Более активный источник (3.4 МКи вместо 0.5 МКи)



Источник ⁵¹Сr

Нейтринный источник ⁵¹Cr Активность 3.4 МКи Энергия нейтрино 750 кэВ (90%) и 430 кэВ (10%, 4.9% Ga сигнала)


Сечение захвата v_e на 71 Ga $\sigma = 5.81 \cdot 10^{-45} \text{ см}^2 \ (+3.6\% \ -2.8\%)$ Скорость захвата 70 сут $^{-1}$ в 1 зоне мишени

Измерения спектров фотонов

Цель:

- 1) Определение вклада примесей в калориметрические измерения активности источника
- 2) Определение активности источника по спектру ВТИ

Расписание измерений спектров

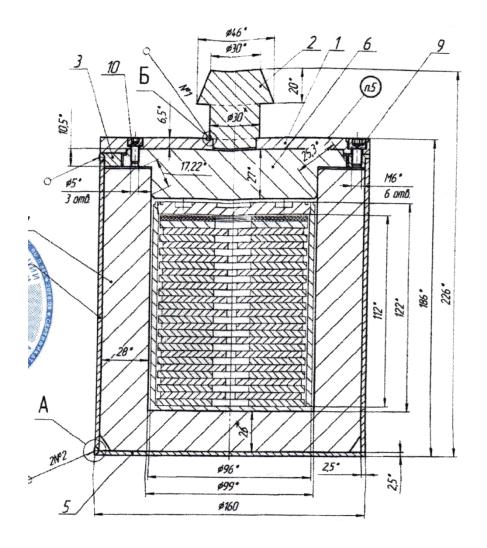
Измерения спектров и калориметрические измерения проводились после каждого облучения 2-зонной Ga мишени нейтрино от источника

В эксперименте BEST проводилось 10 облучений (всего 100 суток с 5 июля 2019)

Облучение Ga (9 суток) +

Перерыв (1 сутки): измерения спектра фотонов (1 час) + калориметрия (~20 час)

Измерения спектров с коллиматорами


Цилиндрические отверстия в Pb толщиной 10 см

Диаметр отверстий от 3 до 10 мм по мере уменьшения активности источника (за 100 сут активность уменьшилась в 12 раз)

Скорость счёта в ППД $30-50 \text{ c}^{-1}$

Через 135 сут проводились измерения без коллиматора v~150 с⁻¹

Источник и его защита

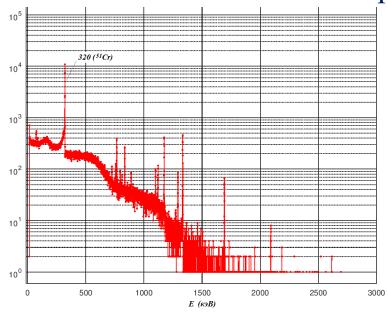
Источник 4007.5 г Обогащение по ⁵⁰Cr 96.6 % (3869 г) Набран из 26 дисков толщиной 4 мм Ø88 × 22 мм и Ø84 × 6 мм

ППД

Ge ППД

Кристалл: Ø5.36 \times 4.95 см

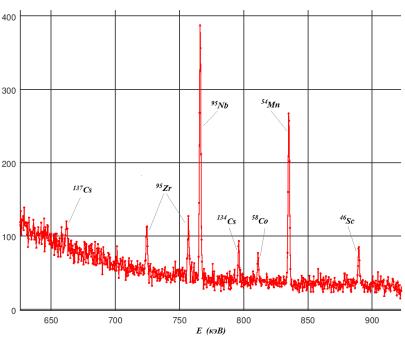
Пассивная защита > 20 см Рв

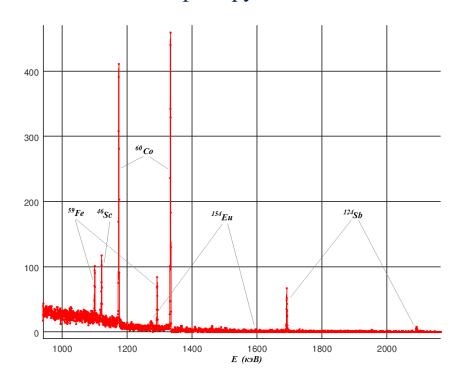

АЦП 8192 канала

Шкала энергий 0 ... 3 МэВ

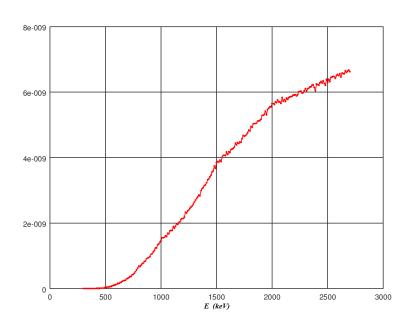
Фоновая скорость счёта 1.5 с-1

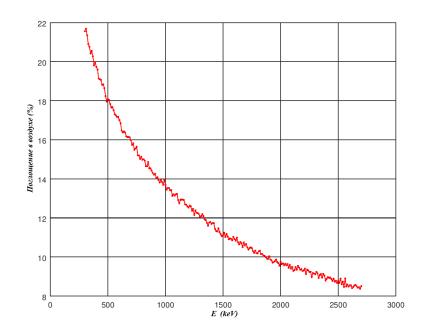
Разрешение 0.13% на линии 1460 кэВ (0.16% на 1 МэВ)


Спектры фотонов

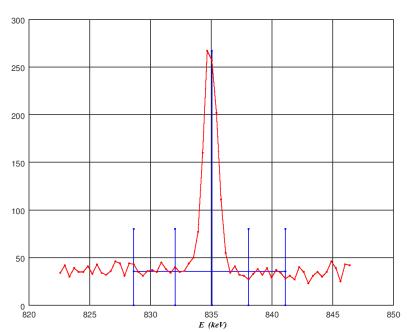


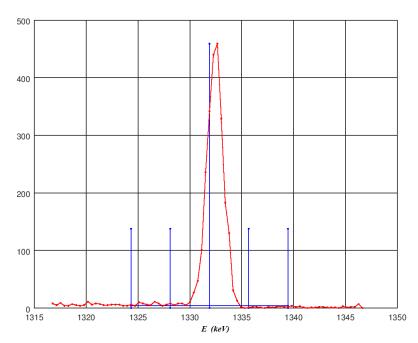
Без коллиматора, через 135 сут после начала эксперимента BEST


Активность 51 Cr упала в 30 раз С коллиматорами видны только линии с E > 1 МэB: 59 Fe, 60 Co, 124 Sb, 154 Eu


Линии с E<1 МэВ ~ однозначно идентифицируются

Прохождение фотонов через защиту




Вероятности регистрации фотонов из источника в ППД

Считаем, что любое взаимодействие выводит фотон из пучка

Взаимодействие с воздухом на 22 м при 620 мм Hg

Число событий в линиях

Выделяем 4 точки около линии Е:

$$(x_1, x_2, x_3, x_4) = E \cdot ((1-4\cdot R), (1-2\cdot R), (1+2\cdot R), (1+4\cdot R))$$

Число событий в пике + фон: $n_{s1} = N(x_2, x_3)$

Отдельно фон: $n_f = N(x_1, x_2) + N(x_3, x_4)$

Число событий без фона: $n_s = n_{s1} - n_f$

Статистическая ошибка:

$$\sigma = \sqrt{n_{s1} + n_f}$$

Изотопы и их активности

	Изотоп,	Энергия в	Выход	n _s	$n_{\rm f}$	Активность на	W,
	$T_{1/2}$	линии,	линии, %	5	1	5.07.2019, мКи	мВт
		кэВ				ŕ	
1	¹³⁷ Cs	662	85	229	1268	8.5×(1±0.23)	0.06
	30.05 г						
2	⁹⁵ Zr	724	11.1	356	768	60×(1±0.12)	2.1
	64 сут	757	54.38	334	748		
3	⁹⁵ Nb	766	99.8	1313	682	87×(1±0.04)	
	35 сут						
4	¹³⁴ Cs	796	85.5	217	626	3.3×(1±0.18)	0.041
	2.06 г						
5	⁵⁸ Co	811	99.44	141	632	6.0×(1±0.27)	0.08
	70.85сут						
6	54 Mn	835	100	963	570	13×(1±0.05)	0.10
	312 сут						
7	⁴⁶ Sc	889	100	254	569	5.2×(1±0.10)	0.07
	83.8 сут	1120	100	346	400		
8	⁵⁹ Fe	1099	57	403	401	23×(1±0.07)	0.22
	44.5 сут	1291	43.2	383	97		
9	60 Co	1173	100	1863	286	6.6×(1±0.03)	0.11
	5.27 г	1332	100	2300	85		
10	¹²⁴ Sb	1690	47.5	341	16	5.8×(1±0.06)	0.10
	60.2 сут	2091	5.5	49	3		
11	¹⁴⁰ Ba- ¹⁴⁰ La	1595	95	<24>	<3>	0.78×(1±0.30)	0.80
	12.76 сут						
12	¹⁵⁴ Eu	1274	34.9	88	114	0.86×(1±0.18)	0.010
	8.6 г	1595	1.8	13	13		
Σ							3.7

Тепловыделение: 51 Cr - 36.7 кэВ/распад или 740 Вт/3.4 МКи

Т.е. вклад примесей в тепловыделение $\sim 5 \cdot 10^{-6}$; суммарная систематика калориметрии $\sim 0.2\%$

Ошибки измерений

- 1.Статистические ошибки из числа импульсов в линиях и в фоновой подложке
- 2.Систематическая ошибка от отклонения источника от вертикальной оси при измерениях:

Считаем тах отклонение $\pm 5^0$ и из-за неопределённости толщины защиты ошибка эффективностей равна

 $10\ \%$ для фотонов с энергиями 600 - $1000\ кэВ$

3% для фотонов с энергиями > 1000 кэВ

Других линий, кроме описанных и фоновых от K и цепей U и Th в спектрах – с коллиматорами и без – нет. Поэтому количество возможных короткоживущих примесей, излучающих фотоны с E > 1000 кэВ, не превышает количество обнаруживаемых в самых первых измерениях ⁵⁹Fe, ⁶⁰Co или ¹²⁴Sb

Оценка активностей

$$n(t) = \frac{\Phi \cdot \sigma_0 \cdot N_0}{\lambda_1 + \Phi \cdot (\sigma_1 - \sigma_0)} \cdot (e^{-\Phi \sigma_0 t} - e^{-(\lambda_1 + \Phi \cdot \sigma_1)t})$$

 $\Phi = 2 \cdot 10^{14} \text{ см}^{-2}\text{c}^{-1}$ — средний поток тепловых нейтронов — вычисляем из активности ⁵¹Cr (определена из калориметрии)

 N_0 – количество облучаемого в реакторе родительского изотопа

 λ_1 — постоянная распада изотопа

 σ_0 и σ_1 – сечения захвата нейтронов ядрами родительского и измеряемого изотопов (для 50 Cr и 51 Cr σ_0 =15.9 б и σ_1 =10.2 б)

t=100 сут – время облучения в реакторе

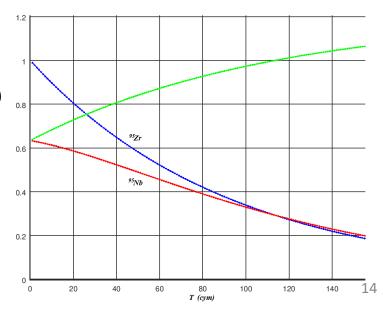
Пара 95 Zr – 95 Nb

⁹⁵Zr (64 сут) 724 кэВ (11.1%) и 757 кэВ (54.4%)

⁹⁵Nb (35 сут) 766 кэВ (99.8%)

 95 Nb из распада $^{95}_{40}Zr \rightarrow ^{95}_{41}Nb + e^{-}$

Наработка ⁹⁵Nb в реакторе:


$$n_{Nb}(t) = \frac{\lambda_1 \cdot \Phi \cdot \sigma_0 \cdot N_0}{\lambda_1 - \Phi \cdot \sigma_0} \cdot \left(\frac{1}{\lambda_2 - \Phi \cdot \sigma_0} \cdot (e^{-\Phi \sigma_0 t} - e^{-\lambda_2 t}) - \frac{1}{\lambda_2 - \lambda_1} \cdot (e^{-\lambda_1 t} - e^{-\lambda_2 t})\right)$$

Через 100 сут облучения n_{Nb}/n_{Zr} =0.63

⁹⁵Nb в источнике:

$$n_{Nb1}(t) = n_{Nb0} \cdot e^{-\lambda_2 t} + \frac{\lambda_1 \cdot n_{Zr0}}{\lambda_1 - \lambda_2} \cdot (e^{-\lambda_2 t} - e^{-\lambda_1 t})$$

Через 135 сут в источнике $n_{Nb}/n_{Zr} \sim 1$

Массы родительских элементов примесей

	Изотоп	Родительский	Реакция облучения на	Macca	Macca	Масса из
		изотоп,	изотопе, сечение σ_1 , б	родительс	элемента	масс-
		содержание в		кого		спектр
		природной		изотопа		
		смеси, %				
1	¹³⁷ Cs	¹³⁶ Xe, 8.9	(n,γ) + распад, 0.26	22 мг	246 мг	-
		¹³⁷ Ba, 11.23	(n,p)	-	-	<400 мкг
2	⁹⁵ Zr	⁹⁴ Zr, 17.33	$(n,\gamma), 0.05$	54 мг	312 мг	1.6 мг
3	⁹⁵ Nb	⁹⁵ Zr	β- распад			
4	¹³⁴ Cs	¹³³ Cs, 100	$(n,\gamma), 29$	53 мкг	53 мкг	<400 мкг
5	⁵⁸ Co	⁵⁸ Ni, 68.27	(n,p)	6.8 мг	10 мг	10 мг
		⁵⁹ Co, 100	(n,2n)	(189 мкг)	(189 мкг)	<400 мкг
6	⁵⁴ Mn	⁵⁴ Fe, 5.8	(n,p)	(8.7 мг)	(150 мг)	360 мг
7	⁴⁶ Sc	⁴⁵ Sc, 100	(n,γ), 17	7.8 мкг	7.8 мкг	<400 мкг
8	⁵⁹ Fe	⁵⁸ Fe, 0.28	$(n,\gamma), 1.26$	419 мкг	150 мг	360 мг
		⁵⁹ Co, 100	(n,p)	(189 мкг)	(189 мкг)	<400 мкг
9	⁶⁰ Co	⁵⁹ Co, 100	$(n,\gamma), 18.7$	189 мкг	189 мкг	<400 мкг
10	¹²⁴ Sb	¹²³ Sb, 42.7	$(n,\gamma), 4.1$	83 мкг	195 мкг	<400 мкг
11	¹⁴⁰ Ba-	¹³⁸ Ba, 71.7	$(n,\gamma) + (n,\gamma), 0.4 + 6$	-	-	<400 мкг
	¹⁴⁰ La		б			
12	¹⁵⁴ Eu	¹⁵³ Eu, 52.2	$(n,\gamma), 350$	11 мкг	22 мкг	<400 мкг

Оценка сечений реакций захвата нейтронов

Считаем, что реакции захвата нейтронов известны для (n,γ) реакций Косвенно по данным измерений находим сечения (n,p) и (n,2n)

Если родительский элемент — железо: Из 58 Fe(n, γ) 59 Fe находим массу Fe 150 мг Тогда сечение реакции 54 Fe(n,p) 54 Mn равно σ (n,p) = 0.13 б

Если родительский элемент — кобальт: Из 59 Co(n, γ) 60 Co находим массу Со 189 мкг Тогда сечение реакции 59 Co(n,2n) 58 Co равно σ (n,2n) < 0.92 б

Конкретное значение реакции получить не можем, т.к. 58 Со может рождаться в реакции 58 Ni(n,p) 58 Co

Масса Ni по спектрометрическим измерениям 10 мг, откуда $\sigma(n,p) < 26 \ \text{мб}$

Противоречия в спектрах

3 группы линий с неоднозначной интерпретацией:

- 1) 662 кэВ распад ¹³⁷Cs
- 2) 724, 757 и 766 кэ $B {}^{95}Zr {}^{95}Nb$
- 3) 1596 кэВ 140 Ва- 140 Lа
- 1) ¹³⁷Cs в реакторе может образоваться в реакциях:

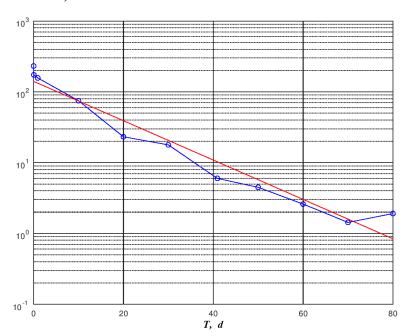
136
Xe (n, γ) 137 Cs

или ¹³⁷Ba (n,p) ¹³⁷Cs

Но для этого нужно $Xe\ 40\ cm^3$ или $Ba > 400\ мкг$ (предел из масс-спектрометрии)

2) Масса родительского Zr 312 мг, в 200 раз больше массы из масс-спектроскопии 1.6 мг

Из Zr делалась оболочка для Cr дисков при облучении в реакторе


При площади касания ~ 1800 см^2 средняя толщина перемещённого Zr $27 \text{ мкм} = 1000 \text{ ат слоёв}; 312 \text{ мг Zr} = 48 \text{ мм}^3$

При T_{nn} =1852 0 С диффузия маловероятна

Возможно, механических перенос Zr на источник в местах с повреждениями кристаллической решётки

Противоречия в спектрах

3)
140
Ba $- ^{140}$ La

Изменение скорости счёта в линии 1596 кэВ в измерениях с коллиматорами. Считая, что $v\sim R^2$, приводим все $v \ltimes R=3$ мм

 $T_{1/2}$ должно быть 10-20 сут единственный кандидат $-^{140}$ Ва с $T_{1/2} = 12.76$ сут Линия 1596 кэВ единственная значимая линия в спектре пары 140 Ва- 140 Lа рождается из распада 140 Ва, $T_{1/2}(^{140}$ Lа) = 40.28 час

 140 Ва может рождаться в реакторе в последовательных захватах нейтронов: 138 Ва (n,γ) 139 Ва и 139 Ва (n,γ) 140 Ва

Но количество Ва в мишени должно быть ~0.7 кг

Т.е., видимо, элемент был занесён извне

В открытом источнике, через 135 сут, линия 1596 кэВ (вместе с 1275 кэВ), считаем, излучается ¹⁵⁴Eu

 154 Еи рождается в реакции (n, γ) на 153 Еи с $\sigma = 350$ б

Другие изотопы Еи не видны из-за относительно малых сечений рождения

Заключение

- 1.Проведены измерения спектров
- 2.Определён вклад р-а примесей в тепловыделение источника
- 3.Оценен элементный состав и количество примесей в материале источника
- 4.Показана возможность выявления примесей нейтронной активацией до уровня 10^{-9} г/г
- 5.Оценены сечения некоторых (n,p) и (n,2n) реакций
- 6.Показана высокая чистота материала источника